1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
|
/* ../netlib/sgges.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
static real c_b38 = 0.f;
static real c_b39 = 1.f;
/* > \brief <b> SGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f or GE matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download SGGES + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgges.f "> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgges.f "> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgges.f "> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE SGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, */
/* SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, */
/* LDVSR, WORK, LWORK, BWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER JOBVSL, JOBVSR, SORT */
/* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
/* .. */
/* .. Array Arguments .. */
/* LOGICAL BWORK( * ) */
/* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
/* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
/* $ VSR( LDVSR, * ), WORK( * ) */
/* .. */
/* .. Function Arguments .. */
/* LOGICAL SELCTG */
/* EXTERNAL SELCTG */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
/* > the generalized eigenvalues, the generalized real Schur form (S,T), */
/* > optionally, the left and/or right matrices of Schur vectors (VSL and */
/* > VSR). This gives the generalized Schur factorization */
/* > */
/* > (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
/* > */
/* > Optionally, it also orders the eigenvalues so that a selected cluster */
/* > of eigenvalues appears in the leading diagonal blocks of the upper */
/* > quasi-triangular matrix S and the upper triangular matrix T.The */
/* > leading columns of VSL and VSR then form an orthonormal basis for the */
/* > corresponding left and right eigenspaces (deflating subspaces). */
/* > */
/* > (If only the generalized eigenvalues are needed, use the driver */
/* > SGGEV instead, which is faster.) */
/* > */
/* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
/* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
/* > usually represented as the pair (alpha,beta), as there is a */
/* > reasonable interpretation for beta=0 or both being zero. */
/* > */
/* > A pair of matrices (S,T) is in generalized real Schur form if T is */
/* > upper triangular with non-negative diagonal and S is block upper */
/* > triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
/* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
/* > "standardized" by making the corresponding elements of T have the */
/* > form: */
/* > [ a 0 ] */
/* > [ 0 b ] */
/* > */
/* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
/* > complex conjugate pair of generalized eigenvalues. */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBVSL */
/* > \verbatim */
/* > JOBVSL is CHARACTER*1 */
/* > = 'N': do not compute the left Schur vectors;
*/
/* > = 'V': compute the left Schur vectors. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBVSR */
/* > \verbatim */
/* > JOBVSR is CHARACTER*1 */
/* > = 'N': do not compute the right Schur vectors;
*/
/* > = 'V': compute the right Schur vectors. */
/* > \endverbatim */
/* > */
/* > \param[in] SORT */
/* > \verbatim */
/* > SORT is CHARACTER*1 */
/* > Specifies whether or not to order the eigenvalues on the */
/* > diagonal of the generalized Schur form. */
/* > = 'N': Eigenvalues are not ordered;
*/
/* > = 'S': Eigenvalues are ordered (see SELCTG);
*/
/* > \endverbatim */
/* > */
/* > \param[in] SELCTG */
/* > \verbatim */
/* > SELCTG is a LOGICAL FUNCTION of three REAL arguments */
/* > SELCTG must be declared EXTERNAL in the calling subroutine. */
/* > If SORT = 'N', SELCTG is not referenced. */
/* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
/* > to the top left of the Schur form. */
/* > An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
/* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true;
i.e. if either */
/* > one of a complex conjugate pair of eigenvalues is selected, */
/* > then both complex eigenvalues are selected. */
/* > */
/* > Note that in the ill-conditioned case, a selected complex */
/* > eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
/* > BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
/* > in this case. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is REAL array, dimension (LDA, N) */
/* > On entry, the first of the pair of matrices. */
/* > On exit, A has been overwritten by its generalized Schur */
/* > form S. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is REAL array, dimension (LDB, N) */
/* > On entry, the second of the pair of matrices. */
/* > On exit, B has been overwritten by its generalized Schur */
/* > form T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of B. LDB >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] SDIM */
/* > \verbatim */
/* > SDIM is INTEGER */
/* > If SORT = 'N', SDIM = 0. */
/* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
/* > for which SELCTG is true. (Complex conjugate pairs for which */
/* > SELCTG is true for either eigenvalue count as 2.) */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHAR */
/* > \verbatim */
/* > ALPHAR is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] ALPHAI */
/* > \verbatim */
/* > ALPHAI is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] BETA */
/* > \verbatim */
/* > BETA is REAL array, dimension (N) */
/* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
/* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, */
/* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
/* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
/* > the real Schur form of (A,B) were further reduced to */
/* > triangular form using 2-by-2 complex unitary transformations. */
/* > If ALPHAI(j) is zero, then the j-th eigenvalue is real;
if */
/* > positive, then the j-th and (j+1)-st eigenvalues are a */
/* > complex conjugate pair, with ALPHAI(j+1) negative. */
/* > */
/* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
/* > may easily over- or underflow, and BETA(j) may even be zero. */
/* > Thus, the user should avoid naively computing the ratio. */
/* > However, ALPHAR and ALPHAI will be always less than and */
/* > usually comparable with norm(A) in magnitude, and BETA always */
/* > less than and usually comparable with norm(B). */
/* > \endverbatim */
/* > */
/* > \param[out] VSL */
/* > \verbatim */
/* > VSL is REAL array, dimension (LDVSL,N) */
/* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
/* > Not referenced if JOBVSL = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVSL */
/* > \verbatim */
/* > LDVSL is INTEGER */
/* > The leading dimension of the matrix VSL. LDVSL >=1, and */
/* > if JOBVSL = 'V', LDVSL >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] VSR */
/* > \verbatim */
/* > VSR is REAL array, dimension (LDVSR,N) */
/* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
/* > Not referenced if JOBVSR = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVSR */
/* > \verbatim */
/* > LDVSR is INTEGER */
/* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
/* > if JOBVSR = 'V', LDVSR >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If N = 0, LWORK >= 1, else LWORK >= max(8*N,6*N+16). */
/* > For good performance , LWORK must generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed;
the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] BWORK */
/* > \verbatim */
/* > BWORK is LOGICAL array, dimension (N) */
/* > Not referenced if SORT = 'N'. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > = 1,...,N: */
/* > The QZ iteration failed. (A,B) are not in Schur */
/* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
/* > be correct for j=INFO+1,...,N. */
/* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
/* > =N+2: after reordering, roundoff changed values of */
/* > some complex eigenvalues so that leading */
/* > eigenvalues in the Generalized Schur form no */
/* > longer satisfy SELCTG=.TRUE. This could also */
/* > be caused due to scaling. */
/* > =N+3: reordering failed in STGSEN. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup realGEeigen */
/* ===================================================================== */
/* Subroutine */
int sgges_(char *jobvsl, char *jobvsr, char *sort, L_fp selctg, integer *n, real *a, integer *lda, real *b, integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *work, integer *lwork, logical *bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2;
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, ip;
real dif[2];
integer ihi, ilo;
real eps, anrm, bnrm;
integer idum[1], ierr, itau, iwrk;
real pvsl, pvsr;
extern logical lsame_(char *, char *);
integer ileft, icols;
logical cursl, ilvsl, ilvsr;
integer irows;
logical lst2sl;
extern /* Subroutine */
int slabad_(real *, real *), sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer *), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *);
logical ilascl, ilbscl;
extern real slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *);
real safmin;
extern /* Subroutine */
int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *);
real safmax;
extern /* Subroutine */
int xerbla_(char *, integer *);
real bignum;
extern /* Subroutine */
int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
integer ijobvl, iright;
extern /* Subroutine */
int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *);
integer ijobvr;
extern /* Subroutine */
int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *);
real anrmto, bnrmto;
logical lastsl;
extern /* Subroutine */
int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *), stgsen_(integer *, logical *, logical *, logical *, integer *, real *, integer *, real *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer *, real *, real *, real *, real *, integer *, integer *, integer *, integer *);
integer minwrk, maxwrk;
real smlnum;
extern /* Subroutine */
int sorgqr_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *);
logical wantst, lquery;
extern /* Subroutine */
int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *);
/* -- LAPACK driver routine (version 3.4.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2011 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* .. Function Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alphar;
--alphai;
--beta;
vsl_dim1 = *ldvsl;
vsl_offset = 1 + vsl_dim1;
vsl -= vsl_offset;
vsr_dim1 = *ldvsr;
vsr_offset = 1 + vsr_dim1;
vsr -= vsr_offset;
--work;
--bwork;
/* Function Body */
if (lsame_(jobvsl, "N"))
{
ijobvl = 1;
ilvsl = FALSE_;
}
else if (lsame_(jobvsl, "V"))
{
ijobvl = 2;
ilvsl = TRUE_;
}
else
{
ijobvl = -1;
ilvsl = FALSE_;
}
if (lsame_(jobvsr, "N"))
{
ijobvr = 1;
ilvsr = FALSE_;
}
else if (lsame_(jobvsr, "V"))
{
ijobvr = 2;
ilvsr = TRUE_;
}
else
{
ijobvr = -1;
ilvsr = FALSE_;
}
wantst = lsame_(sort, "S");
/* Test the input arguments */
*info = 0;
lquery = *lwork == -1;
if (ijobvl <= 0)
{
*info = -1;
}
else if (ijobvr <= 0)
{
*info = -2;
}
else if (! wantst && ! lsame_(sort, "N"))
{
*info = -3;
}
else if (*n < 0)
{
*info = -5;
}
else if (*lda < max(1,*n))
{
*info = -7;
}
else if (*ldb < max(1,*n))
{
*info = -9;
}
else if (*ldvsl < 1 || ilvsl && *ldvsl < *n)
{
*info = -15;
}
else if (*ldvsr < 1 || ilvsr && *ldvsr < *n)
{
*info = -17;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV.) */
if (*info == 0)
{
if (*n > 0)
{
/* Computing MAX */
i__1 = *n << 3;
i__2 = *n * 6 + 16; // , expr subst
minwrk = max(i__1,i__2);
maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, & c__1, n, &c__0);
/* Computing MAX */
i__1 = maxwrk;
i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, &c__1, n, &c_n1); // , expr subst
maxwrk = max(i__1,i__2);
if (ilvsl)
{
/* Computing MAX */
i__1 = maxwrk;
i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR" "GQR", " ", n, &c__1, n, &c_n1); // , expr subst
maxwrk = max(i__1,i__2);
}
}
else
{
minwrk = 1;
maxwrk = 1;
}
work[1] = (real) maxwrk;
if (*lwork < minwrk && ! lquery)
{
*info = -19;
}
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("SGGES ", &i__1);
return 0;
}
else if (lquery)
{
return 0;
}
/* Quick return if possible */
if (*n == 0)
{
*sdim = 0;
return 0;
}
/* Get machine constants */
eps = slamch_("P");
safmin = slamch_("S");
safmax = 1.f / safmin;
slabad_(&safmin, &safmax);
smlnum = sqrt(safmin) / eps;
bignum = 1.f / smlnum;
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
ilascl = FALSE_;
if (anrm > 0.f && anrm < smlnum)
{
anrmto = smlnum;
ilascl = TRUE_;
}
else if (anrm > bignum)
{
anrmto = bignum;
ilascl = TRUE_;
}
if (ilascl)
{
slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr);
}
/* Scale B if max element outside range [SMLNUM,BIGNUM] */
bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
ilbscl = FALSE_;
if (bnrm > 0.f && bnrm < smlnum)
{
bnrmto = smlnum;
ilbscl = TRUE_;
}
else if (bnrm > bignum)
{
bnrmto = bignum;
ilbscl = TRUE_;
}
if (ilbscl)
{
slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr);
}
/* Permute the matrix to make it more nearly triangular */
/* (Workspace: need 6*N + 2*N space for storing balancing factors) */
ileft = 1;
iright = *n + 1;
iwrk = iright + *n;
sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwrk], &ierr);
/* Reduce B to triangular form (QR decomposition of B) */
/* (Workspace: need N, prefer N*NB) */
irows = ihi + 1 - ilo;
icols = *n + 1 - ilo;
itau = iwrk;
iwrk = itau + irows;
i__1 = *lwork + 1 - iwrk;
sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr);
/* Apply the orthogonal transformation to matrix A */
/* (Workspace: need N, prefer N*NB) */
i__1 = *lwork + 1 - iwrk;
sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr);
/* Initialize VSL */
/* (Workspace: need N, prefer N*NB) */
if (ilvsl)
{
slaset_("Full", n, n, &c_b38, &c_b39, &vsl[vsl_offset], ldvsl);
if (irows > 1)
{
i__1 = irows - 1;
i__2 = irows - 1;
slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ ilo + 1 + ilo * vsl_dim1], ldvsl);
}
i__1 = *lwork + 1 - iwrk;
sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwrk], &i__1, &ierr);
}
/* Initialize VSR */
if (ilvsr)
{
slaset_("Full", n, n, &c_b38, &c_b39, &vsr[vsr_offset], ldvsr);
}
/* Reduce to generalized Hessenberg form */
/* (Workspace: none needed) */
sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
/* Perform QZ algorithm, computing Schur vectors if desired */
/* (Workspace: need N) */
iwrk = itau;
i__1 = *lwork + 1 - iwrk;
shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
if (ierr != 0)
{
if (ierr > 0 && ierr <= *n)
{
*info = ierr;
}
else if (ierr > *n && ierr <= *n << 1)
{
*info = ierr - *n;
}
else
{
*info = *n + 1;
}
goto L40;
}
/* Sort eigenvalues ALPHA/BETA if desired */
/* (Workspace: need 4*N+16 ) */
*sdim = 0;
if (wantst)
{
/* Undo scaling on eigenvalues before SELCTGing */
if (ilascl)
{
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &ierr);
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &ierr);
}
if (ilbscl)
{
slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &ierr);
}
/* Select eigenvalues */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
/* L10: */
}
i__1 = *lwork - iwrk + 1;
stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[ vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, & pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
if (ierr == 1)
{
*info = *n + 3;
}
}
/* Apply back-permutation to VSL and VSR */
/* (Workspace: none needed) */
if (ilvsl)
{
sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ vsl_offset], ldvsl, &ierr);
}
if (ilvsr)
{
sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ vsr_offset], ldvsr, &ierr);
}
/* Check if unscaling would cause over/underflow, if so, rescale */
/* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
/* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
if (ilascl)
{
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
if (alphai[i__] != 0.f)
{
if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[ i__] > anrm / anrmto)
{
work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__], f2c_abs(r__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
}
else if (alphai[i__] / safmax > anrmto / anrm || safmin / alphai[i__] > anrm / anrmto)
{
work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[ i__], f2c_abs(r__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
}
}
/* L50: */
}
}
if (ilbscl)
{
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
if (alphai[i__] != 0.f)
{
if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] > bnrm / bnrmto)
{
work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], f2c_abs( r__1));
beta[i__] *= work[1];
alphar[i__] *= work[1];
alphai[i__] *= work[1];
}
}
/* L60: */
}
}
/* Undo scaling */
if (ilascl)
{
slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & ierr);
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & ierr);
slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & ierr);
}
if (ilbscl)
{
slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & ierr);
slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr);
}
if (wantst)
{
/* Check if reordering is correct */
lastsl = TRUE_;
lst2sl = TRUE_;
*sdim = 0;
ip = 0;
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
if (alphai[i__] == 0.f)
{
if (cursl)
{
++(*sdim);
}
ip = 0;
if (cursl && ! lastsl)
{
*info = *n + 2;
}
}
else
{
if (ip == 1)
{
/* Last eigenvalue of conjugate pair */
cursl = cursl || lastsl;
lastsl = cursl;
if (cursl)
{
*sdim += 2;
}
ip = -1;
if (cursl && ! lst2sl)
{
*info = *n + 2;
}
}
else
{
/* First eigenvalue of conjugate pair */
ip = 1;
}
}
lst2sl = lastsl;
lastsl = cursl;
/* L30: */
}
}
L40:
work[1] = (real) maxwrk;
return 0;
/* End of SGGES */
}
/* sgges_ */
|