1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/* ../netlib/sptcon.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief \b SPTCON */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download SPTCON + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptcon. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptcon. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptcon. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE SPTCON( N, D, E, ANORM, RCOND, WORK, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, N */
/* REAL ANORM, RCOND */
/* .. */
/* .. Array Arguments .. */
/* REAL D( * ), E( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > SPTCON computes the reciprocal of the condition number (in the */
/* > 1-norm) of a real symmetric positive definite tridiagonal matrix */
/* > using the factorization A = L*D*L**T or A = U**T*D*U computed by */
/* > SPTTRF. */
/* > */
/* > Norm(inv(A)) is computed by a direct method, and the reciprocal of */
/* > the condition number is computed as */
/* > RCOND = 1 / (ANORM * norm(inv(A))). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] D */
/* > \verbatim */
/* > D is REAL array, dimension (N) */
/* > The n diagonal elements of the diagonal matrix D from the */
/* > factorization of A, as computed by SPTTRF. */
/* > \endverbatim */
/* > */
/* > \param[in] E */
/* > \verbatim */
/* > E is REAL array, dimension (N-1) */
/* > The (n-1) off-diagonal elements of the unit bidiagonal factor */
/* > U or L from the factorization of A, as computed by SPTTRF. */
/* > \endverbatim */
/* > */
/* > \param[in] ANORM */
/* > \verbatim */
/* > ANORM is REAL */
/* > The 1-norm of the original matrix A. */
/* > \endverbatim */
/* > */
/* > \param[out] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > The reciprocal of the condition number of the matrix A, */
/* > computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */
/* > 1-norm of inv(A) computed in this routine. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup realPTcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The method used is described in Nicholas J. Higham, "Efficient */
/* > Algorithms for Computing the Condition Number of a Tridiagonal */
/* > Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int sptcon_(integer *n, real *d__, real *e, real *anorm, real *rcond, real *work, integer *info)
{
/* System generated locals */
integer i__1;
real r__1;
/* Local variables */
integer i__, ix;
extern /* Subroutine */
int xerbla_(char *, integer *);
extern integer isamax_(integer *, real *, integer *);
real ainvnm;
/* -- LAPACK computational routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments. */
/* Parameter adjustments */
--work;
--e;
--d__;
/* Function Body */
*info = 0;
if (*n < 0)
{
*info = -1;
}
else if (*anorm < 0.f)
{
*info = -4;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("SPTCON", &i__1);
return 0;
}
/* Quick return if possible */
*rcond = 0.f;
if (*n == 0)
{
*rcond = 1.f;
return 0;
}
else if (*anorm == 0.f)
{
return 0;
}
/* Check that D(1:N) is positive. */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
if (d__[i__] <= 0.f)
{
return 0;
}
/* L10: */
}
/* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
/* m(i,j) = f2c_abs(A(i,j)); i = j; */
/* m(i,j) = -f2c_abs(A(i,j)), i .ne. j, */
/* and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T. */
/* Solve M(L) * x = e. */
work[1] = 1.f;
i__1 = *n;
for (i__ = 2;
i__ <= i__1;
++i__)
{
work[i__] = work[i__ - 1] * (r__1 = e[i__ - 1], f2c_abs(r__1)) + 1.f;
/* L20: */
}
/* Solve D * M(L)**T * x = b. */
work[*n] /= d__[*n];
for (i__ = *n - 1;
i__ >= 1;
--i__)
{
work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (r__1 = e[i__], f2c_abs(r__1));
/* L30: */
}
/* Compute AINVNM = max(x(i)), 1<=i<=n. */
ix = isamax_(n, &work[1], &c__1);
ainvnm = (r__1 = work[ix], f2c_abs(r__1));
/* Compute the reciprocal condition number. */
if (ainvnm != 0.f)
{
*rcond = 1.f / ainvnm / *anorm;
}
return 0;
/* End of SPTCON */
}
/* sptcon_ */
|