File: stbcon.c

package info (click to toggle)
libflame 5.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 162,052 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,133; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (293 lines) | stat: -rw-r--r-- 9,261 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/* ../netlib/stbcon.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
 on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief \b STBCON */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download STBCON + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stbcon. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stbcon. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stbcon. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE STBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK, */
/* IWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER DIAG, NORM, UPLO */
/* INTEGER INFO, KD, LDAB, N */
/* REAL RCOND */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IWORK( * ) */
/* REAL AB( LDAB, * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > STBCON estimates the reciprocal of the condition number of a */
/* > triangular band matrix A, in either the 1-norm or the infinity-norm. */
/* > */
/* > The norm of A is computed and an estimate is obtained for */
/* > norm(inv(A)), then the reciprocal of the condition number is */
/* > computed as */
/* > RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] NORM */
/* > \verbatim */
/* > NORM is CHARACTER*1 */
/* > Specifies whether the 1-norm condition number or the */
/* > infinity-norm condition number is required: */
/* > = '1' or 'O': 1-norm;
*/
/* > = 'I': Infinity-norm. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': A is upper triangular;
*/
/* > = 'L': A is lower triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] DIAG */
/* > \verbatim */
/* > DIAG is CHARACTER*1 */
/* > = 'N': A is non-unit triangular;
*/
/* > = 'U': A is unit triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KD */
/* > \verbatim */
/* > KD is INTEGER */
/* > The number of superdiagonals or subdiagonals of the */
/* > triangular band matrix A. KD >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is REAL array, dimension (LDAB,N) */
/* > The upper or lower triangular band matrix A, stored in the */
/* > first kd+1 rows of the array. The j-th column of A is stored */
/* > in the j-th column of the array AB as follows: */
/* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*/
/* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
/* > If DIAG = 'U', the diagonal elements of A are not referenced */
/* > and are assumed to be 1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= KD+1. */
/* > \endverbatim */
/* > */
/* > \param[out] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > The reciprocal of the condition number of the matrix A, */
/* > computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (3*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup realOTHERcomputational */
/* ===================================================================== */
/* Subroutine */
int stbcon_(char *norm, char *uplo, char *diag, integer *n, integer *kd, real *ab, integer *ldab, real *rcond, real *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1;
    real r__1;
    /* Local variables */
    integer ix, kase, kase1;
    real scale;
    extern logical lsame_(char *, char *);
    integer isave[3];
    real anorm;
    extern /* Subroutine */
    int srscl_(integer *, real *, real *, integer *);
    logical upper;
    real xnorm;
    extern /* Subroutine */
    int slacn2_(integer *, real *, real *, integer *, real *, integer *, integer *);
    extern real slamch_(char *);
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    extern real slantb_(char *, char *, char *, integer *, integer *, real *, integer *, real *);
    real ainvnm;
    extern /* Subroutine */
    int slatbs_(char *, char *, char *, char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *);
    logical onenrm;
    char normin[1];
    real smlnum;
    logical nounit;
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;
    --iwork;
    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    nounit = lsame_(diag, "N");
    if (! onenrm && ! lsame_(norm, "I"))
    {
        *info = -1;
    }
    else if (! upper && ! lsame_(uplo, "L"))
    {
        *info = -2;
    }
    else if (! nounit && ! lsame_(diag, "U"))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*kd < 0)
    {
        *info = -5;
    }
    else if (*ldab < *kd + 1)
    {
        *info = -7;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("STBCON", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        *rcond = 1.f;
        return 0;
    }
    *rcond = 0.f;
    smlnum = slamch_("Safe minimum") * (real) max(1,*n);
    /* Compute the norm of the triangular matrix A. */
    anorm = slantb_(norm, uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]);
    /* Continue only if ANORM > 0. */
    if (anorm > 0.f)
    {
        /* Estimate the norm of the inverse of A. */
        ainvnm = 0.f;
        *(unsigned char *)normin = 'N';
        if (onenrm)
        {
            kase1 = 1;
        }
        else
        {
            kase1 = 2;
        }
        kase = 0;
L10:
        slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
        if (kase != 0)
        {
            if (kase == kase1)
            {
                /* Multiply by inv(A). */
                slatbs_(uplo, "No transpose", diag, normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info) ;
            }
            else
            {
                /* Multiply by inv(A**T). */
                slatbs_(uplo, "Transpose", diag, normin, n, kd, &ab[ab_offset] , ldab, &work[1], &scale, &work[(*n << 1) + 1], info);
            }
            *(unsigned char *)normin = 'Y';
            /* Multiply by 1/SCALE if doing so will not cause overflow. */
            if (scale != 1.f)
            {
                ix = isamax_(n, &work[1], &c__1);
                xnorm = (r__1 = work[ix], f2c_abs(r__1));
                if (scale < xnorm * smlnum || scale == 0.f)
                {
                    goto L20;
                }
                srscl_(n, &scale, &work[1], &c__1);
            }
            goto L10;
        }
        /* Compute the estimate of the reciprocal condition number. */
        if (ainvnm != 0.f)
        {
            *rcond = 1.f / anorm / ainvnm;
        }
    }
L20:
    return 0;
    /* End of STBCON */
}
/* stbcon_ */