1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/* ../netlib/stbcon.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief \b STBCON */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download STBCON + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stbcon. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stbcon. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stbcon. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE STBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK, */
/* IWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER DIAG, NORM, UPLO */
/* INTEGER INFO, KD, LDAB, N */
/* REAL RCOND */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IWORK( * ) */
/* REAL AB( LDAB, * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > STBCON estimates the reciprocal of the condition number of a */
/* > triangular band matrix A, in either the 1-norm or the infinity-norm. */
/* > */
/* > The norm of A is computed and an estimate is obtained for */
/* > norm(inv(A)), then the reciprocal of the condition number is */
/* > computed as */
/* > RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] NORM */
/* > \verbatim */
/* > NORM is CHARACTER*1 */
/* > Specifies whether the 1-norm condition number or the */
/* > infinity-norm condition number is required: */
/* > = '1' or 'O': 1-norm;
*/
/* > = 'I': Infinity-norm. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': A is upper triangular;
*/
/* > = 'L': A is lower triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] DIAG */
/* > \verbatim */
/* > DIAG is CHARACTER*1 */
/* > = 'N': A is non-unit triangular;
*/
/* > = 'U': A is unit triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KD */
/* > \verbatim */
/* > KD is INTEGER */
/* > The number of superdiagonals or subdiagonals of the */
/* > triangular band matrix A. KD >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is REAL array, dimension (LDAB,N) */
/* > The upper or lower triangular band matrix A, stored in the */
/* > first kd+1 rows of the array. The j-th column of A is stored */
/* > in the j-th column of the array AB as follows: */
/* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*/
/* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
/* > If DIAG = 'U', the diagonal elements of A are not referenced */
/* > and are assumed to be 1. */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= KD+1. */
/* > \endverbatim */
/* > */
/* > \param[out] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > The reciprocal of the condition number of the matrix A, */
/* > computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is REAL array, dimension (3*N) */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup realOTHERcomputational */
/* ===================================================================== */
/* Subroutine */
int stbcon_(char *norm, char *uplo, char *diag, integer *n, integer *kd, real *ab, integer *ldab, real *rcond, real *work, integer *iwork, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1;
real r__1;
/* Local variables */
integer ix, kase, kase1;
real scale;
extern logical lsame_(char *, char *);
integer isave[3];
real anorm;
extern /* Subroutine */
int srscl_(integer *, real *, real *, integer *);
logical upper;
real xnorm;
extern /* Subroutine */
int slacn2_(integer *, real *, real *, integer *, real *, integer *, integer *);
extern real slamch_(char *);
extern /* Subroutine */
int xerbla_(char *, integer *);
extern integer isamax_(integer *, real *, integer *);
extern real slantb_(char *, char *, char *, integer *, integer *, real *, integer *, real *);
real ainvnm;
extern /* Subroutine */
int slatbs_(char *, char *, char *, char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *);
logical onenrm;
char normin[1];
real smlnum;
logical nounit;
/* -- LAPACK computational routine (version 3.4.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2011 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
--work;
--iwork;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
nounit = lsame_(diag, "N");
if (! onenrm && ! lsame_(norm, "I"))
{
*info = -1;
}
else if (! upper && ! lsame_(uplo, "L"))
{
*info = -2;
}
else if (! nounit && ! lsame_(diag, "U"))
{
*info = -3;
}
else if (*n < 0)
{
*info = -4;
}
else if (*kd < 0)
{
*info = -5;
}
else if (*ldab < *kd + 1)
{
*info = -7;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("STBCON", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0)
{
*rcond = 1.f;
return 0;
}
*rcond = 0.f;
smlnum = slamch_("Safe minimum") * (real) max(1,*n);
/* Compute the norm of the triangular matrix A. */
anorm = slantb_(norm, uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]);
/* Continue only if ANORM > 0. */
if (anorm > 0.f)
{
/* Estimate the norm of the inverse of A. */
ainvnm = 0.f;
*(unsigned char *)normin = 'N';
if (onenrm)
{
kase1 = 1;
}
else
{
kase1 = 2;
}
kase = 0;
L10:
slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
if (kase != 0)
{
if (kase == kase1)
{
/* Multiply by inv(A). */
slatbs_(uplo, "No transpose", diag, normin, n, kd, &ab[ ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], info) ;
}
else
{
/* Multiply by inv(A**T). */
slatbs_(uplo, "Transpose", diag, normin, n, kd, &ab[ab_offset] , ldab, &work[1], &scale, &work[(*n << 1) + 1], info);
}
*(unsigned char *)normin = 'Y';
/* Multiply by 1/SCALE if doing so will not cause overflow. */
if (scale != 1.f)
{
ix = isamax_(n, &work[1], &c__1);
xnorm = (r__1 = work[ix], f2c_abs(r__1));
if (scale < xnorm * smlnum || scale == 0.f)
{
goto L20;
}
srscl_(n, &scale, &work[1], &c__1);
}
goto L10;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.f)
{
*rcond = 1.f / anorm / ainvnm;
}
}
L20:
return 0;
/* End of STBCON */
}
/* stbcon_ */
|