1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/* ../netlib/zgtcon.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief \b ZGTCON */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZGTCON + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtcon. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtcon. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtcon. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, */
/* WORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER NORM */
/* INTEGER INFO, N */
/* DOUBLE PRECISION ANORM, RCOND */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IPIV( * ) */
/* COMPLEX*16 D( * ), DL( * ), DU( * ), DU2( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZGTCON estimates the reciprocal of the condition number of a complex */
/* > tridiagonal matrix A using the LU factorization as computed by */
/* > ZGTTRF. */
/* > */
/* > An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* > condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] NORM */
/* > \verbatim */
/* > NORM is CHARACTER*1 */
/* > Specifies whether the 1-norm condition number or the */
/* > infinity-norm condition number is required: */
/* > = '1' or 'O': 1-norm;
*/
/* > = 'I': Infinity-norm. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] DL */
/* > \verbatim */
/* > DL is COMPLEX*16 array, dimension (N-1) */
/* > The (n-1) multipliers that define the matrix L from the */
/* > LU factorization of A as computed by ZGTTRF. */
/* > \endverbatim */
/* > */
/* > \param[in] D */
/* > \verbatim */
/* > D is COMPLEX*16 array, dimension (N) */
/* > The n diagonal elements of the upper triangular matrix U from */
/* > the LU factorization of A. */
/* > \endverbatim */
/* > */
/* > \param[in] DU */
/* > \verbatim */
/* > DU is COMPLEX*16 array, dimension (N-1) */
/* > The (n-1) elements of the first superdiagonal of U. */
/* > \endverbatim */
/* > */
/* > \param[in] DU2 */
/* > \verbatim */
/* > DU2 is COMPLEX*16 array, dimension (N-2) */
/* > The (n-2) elements of the second superdiagonal of U. */
/* > \endverbatim */
/* > */
/* > \param[in] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices;
for 1 <= i <= n, row i of the matrix was */
/* > interchanged with row IPIV(i). IPIV(i) will always be either */
/* > i or i+1;
IPIV(i) = i indicates a row interchange was not */
/* > required. */
/* > \endverbatim */
/* > */
/* > \param[in] ANORM */
/* > \verbatim */
/* > ANORM is DOUBLE PRECISION */
/* > If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* > If NORM = 'I', the infinity-norm of the original matrix A. */
/* > \endverbatim */
/* > */
/* > \param[out] RCOND */
/* > \verbatim */
/* > RCOND is DOUBLE PRECISION */
/* > The reciprocal of the condition number of the matrix A, */
/* > computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */
/* > estimate of the 1-norm of inv(A) computed in this routine. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complex16GTcomputational */
/* ===================================================================== */
/* Subroutine */
int zgtcon_(char *norm, integer *n, doublecomplex *dl, doublecomplex *d__, doublecomplex *du, doublecomplex *du2, integer * ipiv, doublereal *anorm, doublereal *rcond, doublecomplex *work, integer *info)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, kase, kase1;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */
int zlacn2_(integer *, doublecomplex *, doublecomplex *, doublereal *, integer *, integer *), xerbla_( char *, integer *);
doublereal ainvnm;
logical onenrm;
extern /* Subroutine */
int zgttrs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , integer *, doublecomplex *, integer *, integer *);
/* -- LAPACK computational routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments. */
/* Parameter adjustments */
--work;
--ipiv;
--du2;
--du;
--d__;
--dl;
/* Function Body */
*info = 0;
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
if (! onenrm && ! lsame_(norm, "I"))
{
*info = -1;
}
else if (*n < 0)
{
*info = -2;
}
else if (*anorm < 0.)
{
*info = -8;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("ZGTCON", &i__1);
return 0;
}
/* Quick return if possible */
*rcond = 0.;
if (*n == 0)
{
*rcond = 1.;
return 0;
}
else if (*anorm == 0.)
{
return 0;
}
/* Check that D(1:N) is non-zero. */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
i__2 = i__;
if (d__[i__2].r == 0. && d__[i__2].i == 0.)
{
return 0;
}
/* L10: */
}
ainvnm = 0.;
if (onenrm)
{
kase1 = 1;
}
else
{
kase1 = 2;
}
kase = 0;
L20:
zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0)
{
if (kase == kase1)
{
/* Multiply by inv(U)*inv(L). */
zgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1] , &ipiv[1], &work[1], n, info);
}
else
{
/* Multiply by inv(L**H)*inv(U**H). */
zgttrs_("Conjugate transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1], &ipiv[1], &work[1], n, info);
}
goto L20;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.)
{
*rcond = 1. / ainvnm / *anorm;
}
return 0;
/* End of ZGTCON */
}
/* zgtcon_ */
|