1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/* ../netlib/zhpsv.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief <b> ZHPSV computes the solution to system of linear equations A * X = B for OTHER matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZHPSV + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpsv.f "> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpsv.f "> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpsv.f "> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZHPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, LDB, N, NRHS */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IPIV( * ) */
/* COMPLEX*16 AP( * ), B( LDB, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZHPSV computes the solution to a complex system of linear equations */
/* > A * X = B, */
/* > where A is an N-by-N Hermitian matrix stored in packed format and X */
/* > and B are N-by-NRHS matrices. */
/* > */
/* > The diagonal pivoting method is used to factor A as */
/* > A = U * D * U**H, if UPLO = 'U', or */
/* > A = L * D * L**H, if UPLO = 'L', */
/* > where U (or L) is a product of permutation and unit upper (lower) */
/* > triangular matrices, D is Hermitian and block diagonal with 1-by-1 */
/* > and 2-by-2 diagonal blocks. The factored form of A is then used to */
/* > solve the system of equations A * X = B. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored;
*/
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrix B. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AP */
/* > \verbatim */
/* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
/* > On entry, the upper or lower triangle of the Hermitian matrix */
/* > A, packed columnwise in a linear array. The j-th column of A */
/* > is stored in the array AP as follows: */
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*/
/* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* > See below for further details. */
/* > */
/* > On exit, the block diagonal matrix D and the multipliers used */
/* > to obtain the factor U or L from the factorization */
/* > A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as */
/* > a packed triangular matrix in the same storage format as A. */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > Details of the interchanges and the block structure of D, as */
/* > determined by ZHPTRF. If IPIV(k) > 0, then rows and columns */
/* > k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 */
/* > diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, */
/* > then rows and columns k-1 and -IPIV(k) were interchanged and */
/* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and */
/* > IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and */
/* > -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 */
/* > diagonal block. */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
/* > On entry, the N-by-NRHS right hand side matrix B. */
/* > On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
/* > has been completed, but the block diagonal matrix D is */
/* > exactly singular, so the solution could not be */
/* > computed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2011 */
/* > \ingroup complex16OTHERsolve */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The packed storage scheme is illustrated by the following example */
/* > when N = 4, UPLO = 'U': */
/* > */
/* > Two-dimensional storage of the Hermitian matrix A: */
/* > */
/* > a11 a12 a13 a14 */
/* > a22 a23 a24 */
/* > a33 a34 (aij = conjg(aji)) */
/* > a44 */
/* > */
/* > Packed storage of the upper triangle of A: */
/* > */
/* > AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */
int zhpsv_(char *uplo, integer *n, integer *nrhs, doublecomplex *ap, integer *ipiv, doublecomplex *b, integer *ldb, integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
extern /* Subroutine */
int xerbla_(char *, integer *), zhptrf_( char *, integer *, doublecomplex *, integer *, integer *), zhptrs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *);
/* -- LAPACK driver routine (version 3.4.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2011 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L"))
{
*info = -1;
}
else if (*n < 0)
{
*info = -2;
}
else if (*nrhs < 0)
{
*info = -3;
}
else if (*ldb < max(1,*n))
{
*info = -7;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("ZHPSV ", &i__1);
return 0;
}
/* Compute the factorization A = U*D*U**H or A = L*D*L**H. */
zhptrf_(uplo, n, &ap[1], &ipiv[1], info);
if (*info == 0)
{
/* Solve the system A*X = B, overwriting B with X. */
zhptrs_(uplo, n, nrhs, &ap[1], &ipiv[1], &b[b_offset], ldb, info);
}
return 0;
/* End of ZHPSV */
}
/* zhpsv_ */
|