1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/* ../netlib/zlangb.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* Table of constant values */
static integer c__1 = 1;
/* > \brief \b ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZLANGB + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangb. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangb. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangb. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB, */
/* WORK ) */
/* .. Scalar Arguments .. */
/* CHARACTER NORM */
/* INTEGER KL, KU, LDAB, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION WORK( * ) */
/* COMPLEX*16 AB( LDAB, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLANGB returns the value of the one norm, or the Frobenius norm, or */
/* > the infinity norm, or the element of largest absolute value of an */
/* > n by n band matrix A, with kl sub-diagonals and ku super-diagonals. */
/* > \endverbatim */
/* > */
/* > \return ZLANGB */
/* > \verbatim */
/* > */
/* > ZLANGB = ( max(f2c_abs(A(i,j))), NORM = 'M' or 'm' */
/* > ( */
/* > ( norm1(A), NORM = '1', 'O' or 'o' */
/* > ( */
/* > ( normI(A), NORM = 'I' or 'i' */
/* > ( */
/* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* > */
/* > where norm1 denotes the one norm of a matrix (maximum column sum), */
/* > normI denotes the infinity norm of a matrix (maximum row sum) and */
/* > normF denotes the Frobenius norm of a matrix (square root of sum of */
/* > squares). Note that max(f2c_abs(A(i,j))) is not a consistent matrix norm. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] NORM */
/* > \verbatim */
/* > NORM is CHARACTER*1 */
/* > Specifies the value to be returned in ZLANGB as described */
/* > above. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. When N = 0, ZLANGB is */
/* > set to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of sub-diagonals of the matrix A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of super-diagonals of the matrix A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] AB */
/* > \verbatim */
/* > AB is COMPLEX*16 array, dimension (LDAB,N) */
/* > The band matrix A, stored in rows 1 to KL+KU+1. The j-th */
/* > column of A is stored in the j-th column of the array AB as */
/* > follows: */
/* > AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
/* > where LWORK >= N when NORM = 'I';
otherwise, WORK is not */
/* > referenced. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complex16GBauxiliary */
/* ===================================================================== */
doublereal zlangb_(char *norm, integer *n, integer *kl, integer *ku, doublecomplex *ab, integer *ldab, doublereal *work)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
doublereal ret_val;
/* Builtin functions */
double z_abs(doublecomplex *), sqrt(doublereal);
/* Local variables */
integer i__, j, k, l;
doublereal sum, temp, scale;
extern logical lsame_(char *, char *);
doublereal value;
extern logical disnan_(doublereal *);
extern /* Subroutine */
int zlassq_(integer *, doublecomplex *, integer *, doublereal *, doublereal *);
/* -- LAPACK auxiliary routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
--work;
/* Function Body */
if (*n == 0)
{
value = 0.;
}
else if (lsame_(norm, "M"))
{
/* Find max(f2c_abs(A(i,j))). */
value = 0.;
i__1 = *n;
for (j = 1;
j <= i__1;
++j)
{
/* Computing MAX */
i__2 = *ku + 2 - j;
/* Computing MIN */
i__4 = *n + *ku + 1 - j;
i__5 = *kl + *ku + 1; // , expr subst
i__3 = min(i__4,i__5);
for (i__ = max(i__2,1);
i__ <= i__3;
++i__)
{
temp = z_abs(&ab[i__ + j * ab_dim1]);
if (value < temp || disnan_(&temp))
{
value = temp;
}
/* L10: */
}
/* L20: */
}
}
else if (lsame_(norm, "O") || *(unsigned char *) norm == '1')
{
/* Find norm1(A). */
value = 0.;
i__1 = *n;
for (j = 1;
j <= i__1;
++j)
{
sum = 0.;
/* Computing MAX */
i__3 = *ku + 2 - j;
/* Computing MIN */
i__4 = *n + *ku + 1 - j;
i__5 = *kl + *ku + 1; // , expr subst
i__2 = min(i__4,i__5);
for (i__ = max(i__3,1);
i__ <= i__2;
++i__)
{
sum += z_abs(&ab[i__ + j * ab_dim1]);
/* L30: */
}
if (value < sum || disnan_(&sum))
{
value = sum;
}
/* L40: */
}
}
else if (lsame_(norm, "I"))
{
/* Find normI(A). */
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
work[i__] = 0.;
/* L50: */
}
i__1 = *n;
for (j = 1;
j <= i__1;
++j)
{
k = *ku + 1 - j;
/* Computing MAX */
i__2 = 1;
i__3 = j - *ku; // , expr subst
/* Computing MIN */
i__5 = *n;
i__6 = j + *kl; // , expr subst
i__4 = min(i__5,i__6);
for (i__ = max(i__2,i__3);
i__ <= i__4;
++i__)
{
work[i__] += z_abs(&ab[k + i__ + j * ab_dim1]);
/* L60: */
}
/* L70: */
}
value = 0.;
i__1 = *n;
for (i__ = 1;
i__ <= i__1;
++i__)
{
temp = work[i__];
if (value < temp || disnan_(&temp))
{
value = temp;
}
/* L80: */
}
}
else if (lsame_(norm, "F") || lsame_(norm, "E"))
{
/* Find normF(A). */
scale = 0.;
sum = 1.;
i__1 = *n;
for (j = 1;
j <= i__1;
++j)
{
/* Computing MAX */
i__4 = 1;
i__2 = j - *ku; // , expr subst
l = max(i__4,i__2);
k = *ku + 1 - j + l;
/* Computing MIN */
i__2 = *n;
i__3 = j + *kl; // , expr subst
i__4 = min(i__2,i__3) - l + 1;
zlassq_(&i__4, &ab[k + j * ab_dim1], &c__1, &scale, &sum);
/* L90: */
}
value = scale * sqrt(sum);
}
ret_val = value;
return ret_val;
/* End of ZLANGB */
}
/* zlangb_ */
|