1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/* ../netlib/zunmr2.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
#include "FLA_f2c.h" /* > \brief \b ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf (unblocked algorithm). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZUNMR2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmr2. f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmr2. f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmr2. f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, */
/* WORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER SIDE, TRANS */
/* INTEGER INFO, K, LDA, LDC, M, N */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZUNMR2 overwrites the general complex m-by-n matrix C with */
/* > */
/* > Q * C if SIDE = 'L' and TRANS = 'N', or */
/* > */
/* > Q**H* C if SIDE = 'L' and TRANS = 'C', or */
/* > */
/* > C * Q if SIDE = 'R' and TRANS = 'N', or */
/* > */
/* > C * Q**H if SIDE = 'R' and TRANS = 'C', */
/* > */
/* > where Q is a complex unitary matrix defined as the product of k */
/* > elementary reflectors */
/* > */
/* > Q = H(1)**H H(2)**H . . . H(k)**H */
/* > */
/* > as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n */
/* > if SIDE = 'R'. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply Q or Q**H from the Left */
/* > = 'R': apply Q or Q**H from the Right */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': apply Q (No transpose) */
/* > = 'C': apply Q**H (Conjugate transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of elementary reflectors whose product defines */
/* > the matrix Q. */
/* > If SIDE = 'L', M >= K >= 0;
*/
/* > if SIDE = 'R', N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension */
/* > (LDA,M) if SIDE = 'L', */
/* > (LDA,N) if SIDE = 'R' */
/* > The i-th row must contain the vector which defines the */
/* > elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* > ZGERQF in the last k rows of its array argument A. */
/* > A is modified by the routine but restored on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,K). */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (K) */
/* > TAU(i) must contain the scalar factor of the elementary */
/* > reflector H(i), as returned by ZGERQF. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX*16 array, dimension (LDC,N) */
/* > On entry, the m-by-n matrix C. */
/* > On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension */
/* > (N) if SIDE = 'L', */
/* > (M) if SIDE = 'R' */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date September 2012 */
/* > \ingroup complex16OTHERcomputational */
/* ===================================================================== */
/* Subroutine */
int zunmr2_(char *side, char *trans, integer *m, integer *n, integer *k, doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *c__, integer *ldc, doublecomplex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
doublecomplex z__1;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, i1, i2, i3, mi, ni, nq;
doublecomplex aii;
logical left;
doublecomplex taui;
extern logical lsame_(char *, char *);
extern /* Subroutine */
int zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), xerbla_(char *, integer *), zlacgv_(integer *, doublecomplex *, integer *);
logical notran;
/* -- LAPACK computational routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
/* NQ is the order of Q */
if (left)
{
nq = *m;
}
else
{
nq = *n;
}
if (! left && ! lsame_(side, "R"))
{
*info = -1;
}
else if (! notran && ! lsame_(trans, "C"))
{
*info = -2;
}
else if (*m < 0)
{
*info = -3;
}
else if (*n < 0)
{
*info = -4;
}
else if (*k < 0 || *k > nq)
{
*info = -5;
}
else if (*lda < max(1,*k))
{
*info = -7;
}
else if (*ldc < max(1,*m))
{
*info = -10;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("ZUNMR2", &i__1);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0)
{
return 0;
}
if (left && ! notran || ! left && notran)
{
i1 = 1;
i2 = *k;
i3 = 1;
}
else
{
i1 = *k;
i2 = 1;
i3 = -1;
}
if (left)
{
ni = *n;
}
else
{
mi = *m;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1;
i__2 < 0 ? i__ >= i__1 : i__ <= i__1;
i__ += i__2)
{
if (left)
{
/* H(i) or H(i)**H is applied to C(1:m-k+i,1:n) */
mi = *m - *k + i__;
}
else
{
/* H(i) or H(i)**H is applied to C(1:m,1:n-k+i) */
ni = *n - *k + i__;
}
/* Apply H(i) or H(i)**H */
if (notran)
{
d_cnjg(&z__1, &tau[i__]);
taui.r = z__1.r;
taui.i = z__1.i; // , expr subst
}
else
{
i__3 = i__;
taui.r = tau[i__3].r;
taui.i = tau[i__3].i; // , expr subst
}
i__3 = nq - *k + i__ - 1;
zlacgv_(&i__3, &a[i__ + a_dim1], lda);
i__3 = i__ + (nq - *k + i__) * a_dim1;
aii.r = a[i__3].r;
aii.i = a[i__3].i; // , expr subst
i__3 = i__ + (nq - *k + i__) * a_dim1;
a[i__3].r = 1.;
a[i__3].i = 0.; // , expr subst
zlarf_(side, &mi, &ni, &a[i__ + a_dim1], lda, &taui, &c__[c_offset], ldc, &work[1]);
i__3 = i__ + (nq - *k + i__) * a_dim1;
a[i__3].r = aii.r;
a[i__3].i = aii.i; // , expr subst
i__3 = nq - *k + i__ - 1;
zlacgv_(&i__3, &a[i__ + a_dim1], lda);
/* L10: */
}
return 0;
/* End of ZUNMR2 */
}
/* zunmr2_ */
|