| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 
 | *> \brief \b ZHBT21
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
*                          RWORK, RESULT )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            KA, KS, LDA, LDU, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
*       COMPLEX*16         A( LDA, * ), U( LDU, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZHBT21  generally checks a decomposition of the form
*>
*>         A = U S UC>
*> where * means conjugate transpose, A is hermitian banded, U is
*> unitary, and S is diagonal (if KS=0) or symmetric
*> tridiagonal (if KS=1).
*>
*> Specifically:
*>
*>         RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC>         RESULT(2) = | I - UU* | / ( n ulp )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER
*>          If UPLO='U', the upper triangle of A and V will be used and
*>          the (strictly) lower triangle will not be referenced.
*>          If UPLO='L', the lower triangle of A and V will be used and
*>          the (strictly) upper triangle will not be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The size of the matrix.  If it is zero, ZHBT21 does nothing.
*>          It must be at least zero.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*>          KA is INTEGER
*>          The bandwidth of the matrix A.  It must be at least zero.  If
*>          it is larger than N-1, then max( 0, N-1 ) will be used.
*> \endverbatim
*>
*> \param[in] KS
*> \verbatim
*>          KS is INTEGER
*>          The bandwidth of the matrix S.  It may only be zero or one.
*>          If zero, then S is diagonal, and E is not referenced.  If
*>          one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA, N)
*>          The original (unfactored) matrix.  It is assumed to be
*>          hermitian, and only the upper (UPLO='U') or only the lower
*>          (UPLO='L') will be referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at least 1
*>          and at least min( KA, N-1 ).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The diagonal of the (symmetric tri-) diagonal matrix S.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
*>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*>          (3,2) element, etc.
*>          Not referenced if KS=0.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is COMPLEX*16 array, dimension (LDU, N)
*>          The unitary matrix in the decomposition, expressed as a
*>          dense matrix (i.e., not as a product of Householder
*>          transformations, Givens transformations, etc.)
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of U.  LDU must be at least N and
*>          at least 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (N**2)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (2)
*>          The values computed by the two tests described above.  The
*>          values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
*  =====================================================================
      SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            KA, KS, LDA, LDU, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
      COMPLEX*16         A( LDA, * ), U( LDU, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER
      CHARACTER          CUPLO
      INTEGER            IKA, J, JC, JR
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHB, ZLANHP
      EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANHB, ZLANHP
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZHPR, ZHPR2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Constants
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      IKA = MAX( 0, MIN( N-1, KA ) )
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         LOWER = .FALSE.
         CUPLO = 'U'
      ELSE
         LOWER = .TRUE.
         CUPLO = 'L'
      END IF
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Some Error Checks
*
*     Do Test 1
*
*     Norm of A:
*
      ANORM = MAX( ZLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL )
*
*     Compute error matrix:    Error = A - U S U*
*
*     Copy A from SB to SP storage format.
*
      J = 0
      DO 50 JC = 1, N
         IF( LOWER ) THEN
            DO 10 JR = 1, MIN( IKA+1, N+1-JC )
               J = J + 1
               WORK( J ) = A( JR, JC )
   10       CONTINUE
            DO 20 JR = IKA + 2, N + 1 - JC
               J = J + 1
               WORK( J ) = ZERO
   20       CONTINUE
         ELSE
            DO 30 JR = IKA + 2, JC
               J = J + 1
               WORK( J ) = ZERO
   30       CONTINUE
            DO 40 JR = MIN( IKA, JC-1 ), 0, -1
               J = J + 1
               WORK( J ) = A( IKA+1-JR, JC )
   40       CONTINUE
         END IF
   50 CONTINUE
*
      DO 60 J = 1, N
         CALL ZHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
   60 CONTINUE
*
      IF( N.GT.1 .AND. KS.EQ.1 ) THEN
         DO 70 J = 1, N - 1
            CALL ZHPR2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1,
     $                  U( 1, J+1 ), 1, WORK )
   70    CONTINUE
      END IF
      WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  UU* - I
*
      CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
     $            N )
*
      DO 80 J = 1, N
         WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
   80 CONTINUE
*
      RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
     $              DBLE( N ) ) / ( N*ULP )
*
      RETURN
*
*     End of ZHBT21
*
      END
 |