| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 
 | *> \brief \b ZTBT05
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
*                          LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS )
* 
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            KD, LDAB, LDB, LDX, LDXACT, N, NRHS
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   BERR( * ), FERR( * ), RESLTS( * )
*       COMPLEX*16         AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
*      $                   XACT( LDXACT, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTBT05 tests the error bounds from iterative refinement for the
*> computed solution to a system of equations A*X = B, where A is a
*> triangular band matrix.
*>
*> RESLTS(1) = test of the error bound
*>           = norm(X - XACT) / ( norm(X) * FERR )
*>
*> A large value is returned if this ratio is not less than one.
*>
*> RESLTS(2) = residual from the iterative refinement routine
*>           = the maximum of BERR / ( NZ*EPS + (*) ), where
*>             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*>             and NZ = max. number of nonzeros in any row of A, plus 1
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations.
*>          = 'N':  A * X = B  (No transpose)
*>          = 'T':  A'* X = B  (Transpose)
*>          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows of the matrices X, B, and XACT, and the
*>          order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of super-diagonals of the matrix A if UPLO = 'U',
*>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of columns of the matrices X, B, and XACT.
*>          NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is COMPLEX*16 array, dimension (LDAB,N)
*>          The upper or lower triangular band matrix A, stored in the
*>          first kd+1 rows of the array. The j-th column of A is stored
*>          in the j-th column of the array AB as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*>          If DIAG = 'U', the diagonal elements of A are not referenced
*>          and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          The right hand side vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
*>          The computed solution vectors.  Each vector is stored as a
*>          column of the matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] XACT
*> \verbatim
*>          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
*>          The exact solution vectors.  Each vector is stored as a
*>          column of the matrix XACT.
*> \endverbatim
*>
*> \param[in] LDXACT
*> \verbatim
*>          LDXACT is INTEGER
*>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
*> \endverbatim
*>
*> \param[in] FERR
*> \verbatim
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The estimated forward error bounds for each solution vector
*>          X.  If XTRUE is the true solution, FERR bounds the magnitude
*>          of the largest entry in (X - XTRUE) divided by the magnitude
*>          of the largest entry in X.
*> \endverbatim
*>
*> \param[in] BERR
*> \verbatim
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector (i.e., the smallest relative change in any entry of A
*>          or B that makes X an exact solution).
*> \endverbatim
*>
*> \param[out] RESLTS
*> \verbatim
*>          RESLTS is DOUBLE PRECISION array, dimension (2)
*>          The maximum over the NRHS solution vectors of the ratios:
*>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
*>          RESLTS(2) = BERR / ( NZ*EPS + (*) )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
     $                   LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            KD, LDAB, LDB, LDX, LDXACT, N, NRHS
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   BERR( * ), FERR( * ), RESLTS( * )
      COMPLEX*16         AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
     $                   XACT( LDXACT, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, UNIT, UPPER
      INTEGER            I, IFU, IMAX, J, K, NZ
      DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
      COMPLEX*16         ZDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, IZAMAX, DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0.
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESLTS( 1 ) = ZERO
         RESLTS( 2 ) = ZERO
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      UPPER = LSAME( UPLO, 'U' )
      NOTRAN = LSAME( TRANS, 'N' )
      UNIT = LSAME( DIAG, 'U' )
      NZ = MIN( KD, N-1 ) + 1
*
*     Test 1:  Compute the maximum of
*        norm(X - XACT) / ( norm(X) * FERR )
*     over all the vectors X and XACT using the infinity-norm.
*
      ERRBND = ZERO
      DO 30 J = 1, NRHS
         IMAX = IZAMAX( N, X( 1, J ), 1 )
         XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
         DIFF = ZERO
         DO 10 I = 1, N
            DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
   10    CONTINUE
*
         IF( XNORM.GT.ONE ) THEN
            GO TO 20
         ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
            GO TO 20
         ELSE
            ERRBND = ONE / EPS
            GO TO 30
         END IF
*
   20    CONTINUE
         IF( DIFF / XNORM.LE.FERR( J ) ) THEN
            ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
         ELSE
            ERRBND = ONE / EPS
         END IF
   30 CONTINUE
      RESLTS( 1 ) = ERRBND
*
*     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
*     (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*
      IFU = 0
      IF( UNIT )
     $   IFU = 1
      DO 90 K = 1, NRHS
         DO 80 I = 1, N
            TMP = CABS1( B( I, K ) )
            IF( UPPER ) THEN
               IF( .NOT.NOTRAN ) THEN
                  DO 40 J = MAX( I-KD, 1 ), I - IFU
                     TMP = TMP + CABS1( AB( KD+1-I+J, I ) )*
     $                     CABS1( X( J, K ) )
   40             CONTINUE
                  IF( UNIT )
     $               TMP = TMP + CABS1( X( I, K ) )
               ELSE
                  IF( UNIT )
     $               TMP = TMP + CABS1( X( I, K ) )
                  DO 50 J = I + IFU, MIN( I+KD, N )
                     TMP = TMP + CABS1( AB( KD+1+I-J, J ) )*
     $                     CABS1( X( J, K ) )
   50             CONTINUE
               END IF
            ELSE
               IF( NOTRAN ) THEN
                  DO 60 J = MAX( I-KD, 1 ), I - IFU
                     TMP = TMP + CABS1( AB( 1+I-J, J ) )*
     $                     CABS1( X( J, K ) )
   60             CONTINUE
                  IF( UNIT )
     $               TMP = TMP + CABS1( X( I, K ) )
               ELSE
                  IF( UNIT )
     $               TMP = TMP + CABS1( X( I, K ) )
                  DO 70 J = I + IFU, MIN( I+KD, N )
                     TMP = TMP + CABS1( AB( 1+J-I, I ) )*
     $                     CABS1( X( J, K ) )
   70             CONTINUE
               END IF
            END IF
            IF( I.EQ.1 ) THEN
               AXBI = TMP
            ELSE
               AXBI = MIN( AXBI, TMP )
            END IF
   80    CONTINUE
         TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
         IF( K.EQ.1 ) THEN
            RESLTS( 2 ) = TMP
         ELSE
            RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
         END IF
   90 CONTINUE
*
      RETURN
*
*     End of ZTBT05
*
      END
 |