| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 
 | *> \brief \b CQRT15
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
*                          RANK, NORMA, NORMB, ISEED, WORK, LWORK )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
*       REAL               NORMA, NORMB
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       REAL               S( * )
*       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( LWORK )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CQRT15 generates a matrix with full or deficient rank and of various
*> norms.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SCALE
*> \verbatim
*>          SCALE is INTEGER
*>          SCALE = 1: normally scaled matrix
*>          SCALE = 2: matrix scaled up
*>          SCALE = 3: matrix scaled down
*> \endverbatim
*>
*> \param[in] RKSEL
*> \verbatim
*>          RKSEL is INTEGER
*>          RKSEL = 1: full rank matrix
*>          RKSEL = 2: rank-deficient matrix
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of columns of B.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The M-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB, NRHS)
*>          A matrix that is in the range space of matrix A.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension MIN(M,N)
*>          Singular values of A.
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*>          RANK is INTEGER
*>          number of nonzero singular values of A.
*> \endverbatim
*>
*> \param[out] NORMA
*> \verbatim
*>          NORMA is REAL
*>          one-norm norm of A.
*> \endverbatim
*>
*> \param[out] NORMB
*> \verbatim
*>          NORMB is REAL
*>          one-norm norm of B.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is integer array, dimension (4)
*>          seed for random number generator.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          length of work space required.
*>          LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
     $                   RANK, NORMA, NORMB, ISEED, WORK, LWORK )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
      REAL               NORMA, NORMB
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      REAL               S( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, SVMIN
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
     $                   SVMIN = 0.1E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, J, MN
      REAL               BIGNUM, EPS, SMLNUM, TEMP
*     ..
*     .. Local Arrays ..
      REAL               DUMMY( 1 )
*     ..
*     .. External Functions ..
      REAL               CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
      EXTERNAL           CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CLARF, CLARNV, CLAROR, CLASCL, CLASET,
     $                   CSSCAL, SLABAD, SLAORD, SLASCL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      MN = MIN( M, N )
      IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
         CALL XERBLA( 'CQRT15', 16 )
         RETURN
      END IF
*
      SMLNUM = SLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      EPS = SLAMCH( 'Epsilon' )
      SMLNUM = ( SMLNUM / EPS ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Determine rank and (unscaled) singular values
*
      IF( RKSEL.EQ.1 ) THEN
         RANK = MN
      ELSE IF( RKSEL.EQ.2 ) THEN
         RANK = ( 3*MN ) / 4
         DO 10 J = RANK + 1, MN
            S( J ) = ZERO
   10    CONTINUE
      ELSE
         CALL XERBLA( 'CQRT15', 2 )
      END IF
*
      IF( RANK.GT.0 ) THEN
*
*        Nontrivial case
*
         S( 1 ) = ONE
         DO 30 J = 2, RANK
   20       CONTINUE
            TEMP = SLARND( 1, ISEED )
            IF( TEMP.GT.SVMIN ) THEN
               S( J ) = ABS( TEMP )
            ELSE
               GO TO 20
            END IF
   30    CONTINUE
         CALL SLAORD( 'Decreasing', RANK, S, 1 )
*
*        Generate 'rank' columns of a random orthogonal matrix in A
*
         CALL CLARNV( 2, ISEED, M, WORK )
         CALL CSSCAL( M, ONE / SCNRM2( M, WORK, 1 ), WORK, 1 )
         CALL CLASET( 'Full', M, RANK, CZERO, CONE, A, LDA )
         CALL CLARF( 'Left', M, RANK, WORK, 1, CMPLX( TWO ), A, LDA,
     $               WORK( M+1 ) )
*
*        workspace used: m+mn
*
*        Generate consistent rhs in the range space of A
*
         CALL CLARNV( 2, ISEED, RANK*NRHS, WORK )
         CALL CGEMM( 'No transpose', 'No transpose', M, NRHS, RANK,
     $               CONE, A, LDA, WORK, RANK, CZERO, B, LDB )
*
*        work space used: <= mn *nrhs
*
*        generate (unscaled) matrix A
*
         DO 40 J = 1, RANK
            CALL CSSCAL( M, S( J ), A( 1, J ), 1 )
   40    CONTINUE
         IF( RANK.LT.N )
     $      CALL CLASET( 'Full', M, N-RANK, CZERO, CZERO,
     $                   A( 1, RANK+1 ), LDA )
         CALL CLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
     $                WORK, INFO )
*
      ELSE
*
*        work space used 2*n+m
*
*        Generate null matrix and rhs
*
         DO 50 J = 1, MN
            S( J ) = ZERO
   50    CONTINUE
         CALL CLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
         CALL CLASET( 'Full', M, NRHS, CZERO, CZERO, B, LDB )
*
      END IF
*
*     Scale the matrix
*
      IF( SCALE.NE.1 ) THEN
         NORMA = CLANGE( 'Max', M, N, A, LDA, DUMMY )
         IF( NORMA.NE.ZERO ) THEN
            IF( SCALE.EQ.2 ) THEN
*
*              matrix scaled up
*
               CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
     $                      LDA, INFO )
               CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
     $                      MN, INFO )
               CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
     $                      LDB, INFO )
            ELSE IF( SCALE.EQ.3 ) THEN
*
*              matrix scaled down
*
               CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
     $                      LDA, INFO )
               CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
     $                      MN, INFO )
               CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
     $                      LDB, INFO )
            ELSE
               CALL XERBLA( 'CQRT15', 1 )
               RETURN
            END IF
         END IF
      END IF
*
      NORMA = SASUM( MN, S, 1 )
      NORMB = CLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
*
      RETURN
*
*     End of CQRT15
*
      END
 |