| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 
 | *> \brief \b SRQT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
*                          RWORK, RESULT )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
*      $                   R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
*      $                   WORK( LWORK )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SRQT01 tests SGERQF, which computes the RQ factorization of an m-by-n
*> matrix A, and partially tests SORGRQ which forms the n-by-n
*> orthogonal matrix Q.
*>
*> SRQT01 compares R with A*Q', and checks that Q is orthogonal.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          The m-by-n matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*>          AF is REAL array, dimension (LDA,N)
*>          Details of the RQ factorization of A, as returned by SGERQF.
*>          See SGERQF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is REAL array, dimension (LDA,N)
*>          The n-by-n orthogonal matrix Q.
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*>          R is REAL array, dimension (LDA,max(M,N))
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A, AF, Q and L.
*>          LDA >= max(M,N).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is REAL array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors, as returned
*>          by SGERQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (max(M,N))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (2)
*>          The test ratios:
*>          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
*>          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup single_lin
*
*  =====================================================================
      SUBROUTINE SRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
     $                   R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      REAL               ROGUE
      PARAMETER          ( ROGUE = -1.0E+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE, SLANSY
      EXTERNAL           SLAMCH, SLANGE, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SGERQF, SLACPY, SLASET, SORGRQ, SSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'SGERQF'
      CALL SGERQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
      IF( M.LE.N ) THEN
         IF( M.GT.0 .AND. M.LT.N )
     $      CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
         IF( M.GT.1 )
     $      CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
     $                   Q( N-M+2, N-M+1 ), LDA )
      ELSE
         IF( N.GT.1 )
     $      CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
     $                   Q( 2, 1 ), LDA )
      END IF
*
*     Generate the n-by-n matrix Q
*
      SRNAMT = 'SORGRQ'
      CALL SORGRQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy R
*
      CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
      IF( M.LE.N ) THEN
         IF( M.GT.0 )
     $      CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA,
     $                   R( 1, N-M+1 ), LDA )
      ELSE
         IF( M.GT.N .AND. N.GT.0 )
     $      CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
         IF( N.GT.0 )
     $      CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA,
     $                   R( M-N+1, 1 ), LDA )
      END IF
*
*     Compute R - A*Q'
*
      CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
     $            LDA, ONE, R, LDA )
*
*     Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) .
*
      ANORM = SLANGE( '1', M, N, A, LDA, RWORK )
      RESID = SLANGE( '1', M, N, R, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
      CALL SSYRK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, R,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of SRQT01
*
      END
 |