| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 
 | *> \brief \b ZQRT04
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZQRT04(M,N,NB,RESULT)
* 
*       .. Scalar Arguments ..
*       INTEGER M, N, NB, LDT
*       .. Return values ..
*       DOUBLE PRECISION RESULT(6)
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZQRT04 tests ZGEQRT and ZGEMQRT.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          Number of rows in test matrix.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          Number of columns in test matrix.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          Block size of test matrix.  NB <= Min(M,N).
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (6)
*>          Results of each of the six tests below.
*>
*>          RESULT(1) = | A - Q R |
*>          RESULT(2) = | I - Q^H Q |
*>          RESULT(3) = | Q C - Q C |
*>          RESULT(4) = | Q^H C - Q^H C |
*>          RESULT(5) = | C Q - C Q | 
*>          RESULT(6) = | C Q^H - C Q^H |
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date April 2012
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZQRT04(M,N,NB,RESULT)
      IMPLICIT NONE
*
*  -- LAPACK test routine (version 3.4.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     April 2012
*
*     .. Scalar Arguments ..
      INTEGER M, N, NB, LDT
*     .. Return values ..
      DOUBLE PRECISION RESULT(6)
*
*  =====================================================================
*
*     ..
*     .. Local allocatable arrays 
      COMPLEX*16, ALLOCATABLE :: AF(:,:), Q(:,:),
     $  R(:,:), RWORK(:), WORK( : ), T(:,:), 
     $  CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO
      COMPLEX*16 ONE, CZERO
      PARAMETER( ZERO = 0.0, ONE = (1.0,0.0), CZERO=(0.0,0.0) )
*     ..
*     .. Local Scalars ..
      INTEGER INFO, J, K, L, LWORK
      DOUBLE PRECISION   ANORM, EPS, RESID, CNORM, DNORM
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION DLAMCH 
      DOUBLE PRECISION ZLANGE, ZLANSY
      LOGICAL  LSAME
      EXTERNAL DLAMCH, ZLANGE, ZLANSY, LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC  MAX, MIN      
*     ..
*     .. Data statements ..
      DATA ISEED / 1988, 1989, 1990, 1991 /      
*      
      EPS = DLAMCH( 'Epsilon' )
      K = MIN(M,N)
      L = MAX(M,N)
      LWORK = MAX(2,L)*MAX(2,L)*NB
*
*     Dynamically allocate local arrays
*
      ALLOCATE ( A(M,N), AF(M,N), Q(M,M), R(M,L), RWORK(L), 
     $           WORK(LWORK), T(NB,N), C(M,N), CF(M,N), 
     $           D(N,M), DF(N,M) )
*
*     Put random numbers into A and copy to AF
*
      LDT=NB
      DO J=1,N
         CALL ZLARNV( 2, ISEED, M, A( 1, J ) )
      END DO
      CALL ZLACPY( 'Full', M, N, A, M, AF, M )
*
*     Factor the matrix A in the array AF.
*
      CALL ZGEQRT( M, N, NB, AF, M, T, LDT, WORK, INFO )
*
*     Generate the m-by-m matrix Q
*
      CALL ZLASET( 'Full', M, M, CZERO, ONE, Q, M )
      CALL ZGEMQRT( 'R', 'N', M, M, K, NB, AF, M, T, LDT, Q, M,
     $              WORK, INFO )
*
*     Copy R
*
      CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M )
      CALL ZLACPY( 'Upper', M, N, AF, M, R, M )
*
*     Compute |R - Q'*A| / |A| and store in RESULT(1)
*
      CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M )
      ANORM = ZLANGE( '1', M, N, A, M, RWORK )
      RESID = ZLANGE( '1', M, N, R, M, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = RESID / (EPS*MAX(1,M)*ANORM)
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute |I - Q'*Q| and store in RESULT(2)
*
      CALL ZLASET( 'Full', M, M, CZERO, ONE, R, M )
      CALL ZHERK( 'U', 'C', M, M, DREAL(-ONE), Q, M, DREAL(ONE), R, M )
      RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK )
      RESULT( 2 ) = RESID / (EPS*MAX(1,M))
*
*     Generate random m-by-n matrix C and a copy CF
*
      DO J=1,N
         CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
      END DO
      CNORM = ZLANGE( '1', M, N, C, M, RWORK)
      CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
*     Apply Q to C as Q*C
*
      CALL ZGEMQRT( 'L', 'N', M, N, K, NB, AF, M, T, NB, CF, M, 
     $             WORK, INFO)
*
*     Compute |Q*C - Q*C| / |C|
*
      CALL ZGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
      RESID = ZLANGE( '1', M, N, CF, M, RWORK )
      IF( CNORM.GT.ZERO ) THEN
         RESULT( 3 ) = RESID / (EPS*MAX(1,M)*CNORM)
      ELSE
         RESULT( 3 ) = ZERO
      END IF
*
*     Copy C into CF again
*
      CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
*     Apply Q to C as QT*C
*
      CALL ZGEMQRT( 'L', 'C', M, N, K, NB, AF, M, T, NB, CF, M, 
     $             WORK, INFO)
*
*     Compute |QT*C - QT*C| / |C|
*
      CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
      RESID = ZLANGE( '1', M, N, CF, M, RWORK )
      IF( CNORM.GT.ZERO ) THEN
         RESULT( 4 ) = RESID / (EPS*MAX(1,M)*CNORM)
      ELSE
         RESULT( 4 ) = ZERO
      END IF     
*
*     Generate random n-by-m matrix D and a copy DF
*
      DO J=1,M
         CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
      END DO
      DNORM = ZLANGE( '1', N, M, D, N, RWORK)
      CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
*     Apply Q to D as D*Q
*
      CALL ZGEMQRT( 'R', 'N', N, M, K, NB, AF, M, T, NB, DF, N, 
     $             WORK, INFO)      
*
*     Compute |D*Q - D*Q| / |D|
*
      CALL ZGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
      RESID = ZLANGE( '1', N, M, DF, N, RWORK )
      IF( CNORM.GT.ZERO ) THEN
         RESULT( 5 ) = RESID / (EPS*MAX(1,M)*DNORM)
      ELSE
         RESULT( 5 ) = ZERO
      END IF
*
*     Copy D into DF again
*
      CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
*     Apply Q to D as D*QT
*
      CALL ZGEMQRT( 'R', 'C', N, M, K, NB, AF, M, T, NB, DF, N, 
     $             WORK, INFO)      
*
*     Compute |D*QT - D*QT| / |D|
*
      CALL ZGEMM( 'N', 'C', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
      RESID = ZLANGE( '1', N, M, DF, N, RWORK )
      IF( CNORM.GT.ZERO ) THEN
         RESULT( 6 ) = RESID / (EPS*MAX(1,M)*DNORM)
      ELSE
         RESULT( 6 ) = ZERO
      END IF
*
*     Deallocate all arrays
*
      DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
*
      RETURN
      END
 |