| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 
 | *> \brief \b ZDRVES
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
*                          NOUNIT, A, LDA, H, HT, W, WT, VS, LDVS, RESULT,
*                          WORK, NWORK, RWORK, IWORK, BWORK, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
*       DOUBLE PRECISION   THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            BWORK( * ), DOTYPE( * )
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
*       DOUBLE PRECISION   RESULT( 13 ), RWORK( * )
*       COMPLEX*16         A( LDA, * ), H( LDA, * ), HT( LDA, * ),
*      $                   VS( LDVS, * ), W( * ), WORK( * ), WT( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    ZDRVES checks the nonsymmetric eigenvalue (Schur form) problem
*>    driver ZGEES.
*>
*>    When ZDRVES is called, a number of matrix "sizes" ("n's") and a
*>    number of matrix "types" are specified.  For each size ("n")
*>    and each type of matrix, one matrix will be generated and used
*>    to test the nonsymmetric eigenroutines.  For each matrix, 13
*>    tests will be performed:
*>
*>    (1)     0 if T is in Schur form, 1/ulp otherwise
*>           (no sorting of eigenvalues)
*>
*>    (2)     | A - VS T VS' | / ( n |A| ulp )
*>
*>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
*>      form  (no sorting of eigenvalues).
*>
*>    (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
*>
*>    (4)     0     if W are eigenvalues of T
*>            1/ulp otherwise
*>            (no sorting of eigenvalues)
*>
*>    (5)     0     if T(with VS) = T(without VS),
*>            1/ulp otherwise
*>            (no sorting of eigenvalues)
*>
*>    (6)     0     if eigenvalues(with VS) = eigenvalues(without VS),
*>            1/ulp otherwise
*>            (no sorting of eigenvalues)
*>
*>    (7)     0 if T is in Schur form, 1/ulp otherwise
*>            (with sorting of eigenvalues)
*>
*>    (8)     | A - VS T VS' | / ( n |A| ulp )
*>
*>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
*>      form  (with sorting of eigenvalues).
*>
*>    (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
*>
*>    (10)    0     if W are eigenvalues of T
*>            1/ulp otherwise
*>            (with sorting of eigenvalues)
*>
*>    (11)    0     if T(with VS) = T(without VS),
*>            1/ulp otherwise
*>            (with sorting of eigenvalues)
*>
*>    (12)    0     if eigenvalues(with VS) = eigenvalues(without VS),
*>            1/ulp otherwise
*>            (with sorting of eigenvalues)
*>
*>    (13)    if sorting worked and SDIM is the number of
*>            eigenvalues which were SELECTed
*>
*>    The "sizes" are specified by an array NN(1:NSIZES); the value of
*>    each element NN(j) specifies one size.
*>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*>    Currently, the list of possible types is:
*>
*>    (1)  The zero matrix.
*>    (2)  The identity matrix.
*>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
*>
*>    (4)  A diagonal matrix with evenly spaced entries
*>         1, ..., ULP  and random complex angles.
*>         (ULP = (first number larger than 1) - 1 )
*>    (5)  A diagonal matrix with geometrically spaced entries
*>         1, ..., ULP  and random complex angles.
*>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*>         and random complex angles.
*>
*>    (7)  Same as (4), but multiplied by a constant near
*>         the overflow threshold
*>    (8)  Same as (4), but multiplied by a constant near
*>         the underflow threshold
*>
*>    (9)  A matrix of the form  U' T U, where U is unitary and
*>         T has evenly spaced entries 1, ..., ULP with random
*>         complex angles on the diagonal and random O(1) entries in
*>         the upper triangle.
*>
*>    (10) A matrix of the form  U' T U, where U is unitary and
*>         T has geometrically spaced entries 1, ..., ULP with random
*>         complex angles on the diagonal and random O(1) entries in
*>         the upper triangle.
*>
*>    (11) A matrix of the form  U' T U, where U is orthogonal and
*>         T has "clustered" entries 1, ULP,..., ULP with random
*>         complex angles on the diagonal and random O(1) entries in
*>         the upper triangle.
*>
*>    (12) A matrix of the form  U' T U, where U is unitary and
*>         T has complex eigenvalues randomly chosen from
*>         ULP < |z| < 1   and random O(1) entries in the upper
*>         triangle.
*>
*>    (13) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
*>         with random complex angles on the diagonal and random O(1)
*>         entries in the upper triangle.
*>
*>    (14) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has geometrically spaced entries
*>         1, ..., ULP with random complex angles on the diagonal
*>         and random O(1) entries in the upper triangle.
*>
*>    (15) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
*>         with random complex angles on the diagonal and random O(1)
*>         entries in the upper triangle.
*>
*>    (16) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has complex eigenvalues randomly chosen
*>         from ULP < |z| < 1 and random O(1) entries in the upper
*>         triangle.
*>
*>    (17) Same as (16), but multiplied by a constant
*>         near the overflow threshold
*>    (18) Same as (16), but multiplied by a constant
*>         near the underflow threshold
*>
*>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
*>         If N is at least 4, all entries in first two rows and last
*>         row, and first column and last two columns are zero.
*>    (20) Same as (19), but multiplied by a constant
*>         near the overflow threshold
*>    (21) Same as (19), but multiplied by a constant
*>         near the underflow threshold
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NSIZES
*> \verbatim
*>          NSIZES is INTEGER
*>          The number of sizes of matrices to use.  If it is zero,
*>          ZDRVES does nothing.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER array, dimension (NSIZES)
*>          An array containing the sizes to be used for the matrices.
*>          Zero values will be skipped.  The values must be at least
*>          zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*>          NTYPES is INTEGER
*>          The number of elements in DOTYPE.   If it is zero, ZDRVES
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
*>          defined, which is to use whatever matrix is in A.  This
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*>          DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
*>          matrix of that size and of type j will be generated.
*>          If NTYPES is smaller than the maximum number of types
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
*>          MAXTYP will not be generated.  If NTYPES is larger
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*>          will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry ISEED specifies the seed of the random number
*>          generator. The array elements should be between 0 and 4095;
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
*>          be odd.  The random number generator uses a linear
*>          congruential sequence limited to small integers, and so
*>          should produce machine independent random numbers. The
*>          values of ISEED are changed on exit, and can be used in the
*>          next call to ZDRVES to continue the same random number
*>          sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is DOUBLE PRECISION
*>          A test will count as "failed" if the "error", computed as
*>          described above, exceeds THRESH.  Note that the error
*>          is scaled to be O(1), so THRESH should be a reasonably
*>          small multiple of 1, e.g., 10 or 100.  In particular,
*>          it should not depend on the precision (single vs. double)
*>          or the size of the matrix.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*>          NOUNIT is INTEGER
*>          The FORTRAN unit number for printing out error messages
*>          (e.g., if a routine returns INFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA, max(NN))
*>          Used to hold the matrix whose eigenvalues are to be
*>          computed.  On exit, A contains the last matrix actually used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A, and H. LDA must be at
*>          least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[out] H
*> \verbatim
*>          H is COMPLEX*16 array, dimension (LDA, max(NN))
*>          Another copy of the test matrix A, modified by ZGEES.
*> \endverbatim
*>
*> \param[out] HT
*> \verbatim
*>          HT is COMPLEX*16 array, dimension (LDA, max(NN))
*>          Yet another copy of the test matrix A, modified by ZGEES.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is COMPLEX*16 array, dimension (max(NN))
*>          The computed eigenvalues of A.
*> \endverbatim
*>
*> \param[out] WT
*> \verbatim
*>          WT is COMPLEX*16 array, dimension (max(NN))
*>          Like W, this array contains the eigenvalues of A,
*>          but those computed when ZGEES only computes a partial
*>          eigendecomposition, i.e. not Schur vectors
*> \endverbatim
*>
*> \param[out] VS
*> \verbatim
*>          VS is COMPLEX*16 array, dimension (LDVS, max(NN))
*>          VS holds the computed Schur vectors.
*> \endverbatim
*>
*> \param[in] LDVS
*> \verbatim
*>          LDVS is INTEGER
*>          Leading dimension of VS. Must be at least max(1,max(NN)).
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (13)
*>          The values computed by the 13 tests described above.
*>          The values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (NWORK)
*> \endverbatim
*>
*> \param[in] NWORK
*> \verbatim
*>          NWORK is INTEGER
*>          The number of entries in WORK.  This must be at least
*>          5*NN(j)+2*NN(j)**2 for all j.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*>          BWORK is LOGICAL array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          If 0, then everything ran OK.
*>           -1: NSIZES < 0
*>           -2: Some NN(j) < 0
*>           -3: NTYPES < 0
*>           -6: THRESH < 0
*>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
*>          -15: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ).
*>          -18: NWORK too small.
*>          If  ZLATMR, CLATMS, CLATME or ZGEES returns an error code,
*>              the absolute value of it is returned.
*>
*>-----------------------------------------------------------------------
*>
*>     Some Local Variables and Parameters:
*>     ---- ----- --------- --- ----------
*>     ZERO, ONE       Real 0 and 1.
*>     MAXTYP          The number of types defined.
*>     NMAX            Largest value in NN.
*>     NERRS           The number of tests which have exceeded THRESH
*>     COND, CONDS,
*>     IMODE           Values to be passed to the matrix generators.
*>     ANORM           Norm of A; passed to matrix generators.
*>
*>     OVFL, UNFL      Overflow and underflow thresholds.
*>     ULP, ULPINV     Finest relative precision and its inverse.
*>     RTULP, RTULPI   Square roots of the previous 4 values.
*>             The following four arrays decode JTYPE:
*>     KTYPE(j)        The general type (1-10) for type "j".
*>     KMODE(j)        The MODE value to be passed to the matrix
*>                     generator for type "j".
*>     KMAGN(j)        The order of magnitude ( O(1),
*>                     O(overflow^(1/2) ), O(underflow^(1/2) )
*>     KCONDS(j)       Select whether CONDS is to be 1 or
*>                     1/sqrt(ulp).  (0 means irrelevant.)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
*  =====================================================================
      SUBROUTINE ZDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
     $                   NOUNIT, A, LDA, H, HT, W, WT, VS, LDVS, RESULT,
     $                   WORK, NWORK, RWORK, IWORK, BWORK, INFO )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            BWORK( * ), DOTYPE( * )
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
      DOUBLE PRECISION   RESULT( 13 ), RWORK( * )
      COMPLEX*16         A( LDA, * ), H( LDA, * ), HT( LDA, * ),
     $                   VS( LDVS, * ), W( * ), WORK( * ), WT( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      INTEGER            MAXTYP
      PARAMETER          ( MAXTYP = 21 )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADNN
      CHARACTER          SORT
      CHARACTER*3        PATH
      INTEGER            I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL,
     $                   JSIZE, JTYPE, KNTEIG, LWORK, MTYPES, N, NERRS,
     $                   NFAIL, NMAX, NNWORK, NTEST, NTESTF, NTESTT,
     $                   RSUB, SDIM
      DOUBLE PRECISION   ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
     $                   ULPINV, UNFL
*     ..
*     .. Local Arrays ..
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
     $                   KTYPE( MAXTYP )
      DOUBLE PRECISION   RES( 2 )
*     ..
*     .. Arrays in Common ..
      LOGICAL            SELVAL( 20 )
      DOUBLE PRECISION   SELWI( 20 ), SELWR( 20 )
*     ..
*     .. Scalars in Common ..
      INTEGER            SELDIM, SELOPT
*     ..
*     .. Common blocks ..
      COMMON             / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
*     ..
*     .. External Functions ..
      LOGICAL            ZSLECT
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           ZSLECT, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, DLASUM, XERBLA, ZGEES, ZHST01, ZLACPY,
     $                   ZLASET, ZLATME, ZLATMR, ZLATMS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DCMPLX, MAX, MIN, SQRT
*     ..
*     .. Data statements ..
      DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
      DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
     $                   3, 1, 2, 3 /
      DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
     $                   1, 5, 5, 5, 4, 3, 1 /
      DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
*     ..
*     .. Executable Statements ..
*
      PATH( 1: 1 ) = 'Zomplex precision'
      PATH( 2: 3 ) = 'ES'
*
*     Check for errors
*
      NTESTT = 0
      NTESTF = 0
      INFO = 0
      SELOPT = 0
*
*     Important constants
*
      BADNN = .FALSE.
      NMAX = 0
      DO 10 J = 1, NSIZES
         NMAX = MAX( NMAX, NN( J ) )
         IF( NN( J ).LT.0 )
     $      BADNN = .TRUE.
   10 CONTINUE
*
*     Check for errors
*
      IF( NSIZES.LT.0 ) THEN
         INFO = -1
      ELSE IF( BADNN ) THEN
         INFO = -2
      ELSE IF( NTYPES.LT.0 ) THEN
         INFO = -3
      ELSE IF( THRESH.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( NOUNIT.LE.0 ) THEN
         INFO = -7
      ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
         INFO = -9
      ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN
         INFO = -15
      ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
         INFO = -18
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZDRVES', -INFO )
         RETURN
      END IF
*
*     Quick return if nothing to do
*
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
     $   RETURN
*
*     More Important constants
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      ULPINV = ONE / ULP
      RTULP = SQRT( ULP )
      RTULPI = ONE / RTULP
*
*     Loop over sizes, types
*
      NERRS = 0
*
      DO 240 JSIZE = 1, NSIZES
         N = NN( JSIZE )
         IF( NSIZES.NE.1 ) THEN
            MTYPES = MIN( MAXTYP, NTYPES )
         ELSE
            MTYPES = MIN( MAXTYP+1, NTYPES )
         END IF
*
         DO 230 JTYPE = 1, MTYPES
            IF( .NOT.DOTYPE( JTYPE ) )
     $         GO TO 230
*
*           Save ISEED in case of an error.
*
            DO 20 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   20       CONTINUE
*
*           Compute "A"
*
*           Control parameters:
*
*           KMAGN  KCONDS  KMODE        KTYPE
*       =1  O(1)   1       clustered 1  zero
*       =2  large  large   clustered 2  identity
*       =3  small          exponential  Jordan
*       =4                 arithmetic   diagonal, (w/ eigenvalues)
*       =5                 random log   symmetric, w/ eigenvalues
*       =6                 random       general, w/ eigenvalues
*       =7                              random diagonal
*       =8                              random symmetric
*       =9                              random general
*       =10                             random triangular
*
            IF( MTYPES.GT.MAXTYP )
     $         GO TO 90
*
            ITYPE = KTYPE( JTYPE )
            IMODE = KMODE( JTYPE )
*
*           Compute norm
*
            GO TO ( 30, 40, 50 )KMAGN( JTYPE )
*
   30       CONTINUE
            ANORM = ONE
            GO TO 60
*
   40       CONTINUE
            ANORM = OVFL*ULP
            GO TO 60
*
   50       CONTINUE
            ANORM = UNFL*ULPINV
            GO TO 60
*
   60       CONTINUE
*
            CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
            IINFO = 0
            COND = ULPINV
*
*           Special Matrices -- Identity & Jordan block
*
            IF( ITYPE.EQ.1 ) THEN
*
*              Zero
*
               IINFO = 0
*
            ELSE IF( ITYPE.EQ.2 ) THEN
*
*              Identity
*
               DO 70 JCOL = 1, N
                  A( JCOL, JCOL ) = DCMPLX( ANORM )
   70          CONTINUE
*
            ELSE IF( ITYPE.EQ.3 ) THEN
*
*              Jordan Block
*
               DO 80 JCOL = 1, N
                  A( JCOL, JCOL ) = DCMPLX( ANORM )
                  IF( JCOL.GT.1 )
     $               A( JCOL, JCOL-1 ) = CONE
   80          CONTINUE
*
            ELSE IF( ITYPE.EQ.4 ) THEN
*
*              Diagonal Matrix, [Eigen]values Specified
*
               CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
     $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.5 ) THEN
*
*              Symmetric, eigenvalues specified
*
               CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
     $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.6 ) THEN
*
*              General, eigenvalues specified
*
               IF( KCONDS( JTYPE ).EQ.1 ) THEN
                  CONDS = ONE
               ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
                  CONDS = RTULPI
               ELSE
                  CONDS = ZERO
               END IF
*
               CALL ZLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE,
     $                      'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM,
     $                      A, LDA, WORK( 2*N+1 ), IINFO )
*
            ELSE IF( ITYPE.EQ.7 ) THEN
*
*              Diagonal, random eigenvalues
*
               CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.8 ) THEN
*
*              Symmetric, random eigenvalues
*
               CALL ZLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.9 ) THEN
*
*              General, random eigenvalues
*
               CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
               IF( N.GE.4 ) THEN
                  CALL ZLASET( 'Full', 2, N, CZERO, CZERO, A, LDA )
                  CALL ZLASET( 'Full', N-3, 1, CZERO, CZERO, A( 3, 1 ),
     $                         LDA )
                  CALL ZLASET( 'Full', N-3, 2, CZERO, CZERO,
     $                         A( 3, N-1 ), LDA )
                  CALL ZLASET( 'Full', 1, N, CZERO, CZERO, A( N, 1 ),
     $                         LDA )
               END IF
*
            ELSE IF( ITYPE.EQ.10 ) THEN
*
*              Triangular, random eigenvalues
*
               CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE
*
               IINFO = 1
            END IF
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               RETURN
            END IF
*
   90       CONTINUE
*
*           Test for minimal and generous workspace
*
            DO 220 IWK = 1, 2
               IF( IWK.EQ.1 ) THEN
                  NNWORK = 3*N
               ELSE
                  NNWORK = 5*N + 2*N**2
               END IF
               NNWORK = MAX( NNWORK, 1 )
*
*              Initialize RESULT
*
               DO 100 J = 1, 13
                  RESULT( J ) = -ONE
  100          CONTINUE
*
*              Test with and without sorting of eigenvalues
*
               DO 180 ISORT = 0, 1
                  IF( ISORT.EQ.0 ) THEN
                     SORT = 'N'
                     RSUB = 0
                  ELSE
                     SORT = 'S'
                     RSUB = 6
                  END IF
*
*                 Compute Schur form and Schur vectors, and test them
*
                  CALL ZLACPY( 'F', N, N, A, LDA, H, LDA )
                  CALL ZGEES( 'V', SORT, ZSLECT, N, H, LDA, SDIM, W, VS,
     $                        LDVS, WORK, NNWORK, RWORK, BWORK, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     RESULT( 1+RSUB ) = ULPINV
                     WRITE( NOUNIT, FMT = 9992 )'ZGEES1', IINFO, N,
     $                  JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 190
                  END IF
*
*                 Do Test (1) or Test (7)
*
                  RESULT( 1+RSUB ) = ZERO
                  DO 120 J = 1, N - 1
                     DO 110 I = J + 1, N
                        IF( H( I, J ).NE.ZERO )
     $                     RESULT( 1+RSUB ) = ULPINV
  110                CONTINUE
  120             CONTINUE
*
*                 Do Tests (2) and (3) or Tests (8) and (9)
*
                  LWORK = MAX( 1, 2*N*N )
                  CALL ZHST01( N, 1, N, A, LDA, H, LDA, VS, LDVS, WORK,
     $                         LWORK, RWORK, RES )
                  RESULT( 2+RSUB ) = RES( 1 )
                  RESULT( 3+RSUB ) = RES( 2 )
*
*                 Do Test (4) or Test (10)
*
                  RESULT( 4+RSUB ) = ZERO
                  DO 130 I = 1, N
                     IF( H( I, I ).NE.W( I ) )
     $                  RESULT( 4+RSUB ) = ULPINV
  130             CONTINUE
*
*                 Do Test (5) or Test (11)
*
                  CALL ZLACPY( 'F', N, N, A, LDA, HT, LDA )
                  CALL ZGEES( 'N', SORT, ZSLECT, N, HT, LDA, SDIM, WT,
     $                        VS, LDVS, WORK, NNWORK, RWORK, BWORK,
     $                        IINFO )
                  IF( IINFO.NE.0 ) THEN
                     RESULT( 5+RSUB ) = ULPINV
                     WRITE( NOUNIT, FMT = 9992 )'ZGEES2', IINFO, N,
     $                  JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     GO TO 190
                  END IF
*
                  RESULT( 5+RSUB ) = ZERO
                  DO 150 J = 1, N
                     DO 140 I = 1, N
                        IF( H( I, J ).NE.HT( I, J ) )
     $                     RESULT( 5+RSUB ) = ULPINV
  140                CONTINUE
  150             CONTINUE
*
*                 Do Test (6) or Test (12)
*
                  RESULT( 6+RSUB ) = ZERO
                  DO 160 I = 1, N
                     IF( W( I ).NE.WT( I ) )
     $                  RESULT( 6+RSUB ) = ULPINV
  160             CONTINUE
*
*                 Do Test (13)
*
                  IF( ISORT.EQ.1 ) THEN
                     RESULT( 13 ) = ZERO
                     KNTEIG = 0
                     DO 170 I = 1, N
                        IF( ZSLECT( W( I ) ) )
     $                     KNTEIG = KNTEIG + 1
                        IF( I.LT.N ) THEN
                           IF( ZSLECT( W( I+1 ) ) .AND.
     $                         ( .NOT.ZSLECT( W( I ) ) ) )RESULT( 13 )
     $                         = ULPINV
                        END IF
  170                CONTINUE
                     IF( SDIM.NE.KNTEIG )
     $                  RESULT( 13 ) = ULPINV
                  END IF
*
  180          CONTINUE
*
*              End of Loop -- Check for RESULT(j) > THRESH
*
  190          CONTINUE
*
               NTEST = 0
               NFAIL = 0
               DO 200 J = 1, 13
                  IF( RESULT( J ).GE.ZERO )
     $               NTEST = NTEST + 1
                  IF( RESULT( J ).GE.THRESH )
     $               NFAIL = NFAIL + 1
  200          CONTINUE
*
               IF( NFAIL.GT.0 )
     $            NTESTF = NTESTF + 1
               IF( NTESTF.EQ.1 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )PATH
                  WRITE( NOUNIT, FMT = 9998 )
                  WRITE( NOUNIT, FMT = 9997 )
                  WRITE( NOUNIT, FMT = 9996 )
                  WRITE( NOUNIT, FMT = 9995 )THRESH
                  WRITE( NOUNIT, FMT = 9994 )
                  NTESTF = 2
               END IF
*
               DO 210 J = 1, 13
                  IF( RESULT( J ).GE.THRESH ) THEN
                     WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE,
     $                  J, RESULT( J )
                  END IF
  210          CONTINUE
*
               NERRS = NERRS + NFAIL
               NTESTT = NTESTT + NTEST
*
  220       CONTINUE
  230    CONTINUE
  240 CONTINUE
*
*     Summary
*
      CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
*
 9999 FORMAT( / 1X, A3, ' -- Complex Schur Form Decomposition Driver',
     $      / ' Matrix types (see ZDRVES for details): ' )
*
 9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
     $      '           ', '  5=Diagonal: geometr. spaced entries.',
     $      / '  2=Identity matrix.                    ', '  6=Diagona',
     $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
     $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
     $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
     $      'mall, evenly spaced.' )
 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
     $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
     $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
     $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
     $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
     $      'lex ', A6, / ' 12=Well-cond., random complex ', A6, '   ',
     $      ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi',
     $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
     $      ' complx ', A4 )
 9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
     $      'with small random entries.', / ' 20=Matrix with large ran',
     $      'dom entries.   ', / )
 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
     $      / ' ( A denotes A on input and T denotes A on output)',
     $      / / ' 1 = 0 if T in Schur form (no sort), ',
     $      '  1/ulp otherwise', /
     $      ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
     $      / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ',
     $      / ' 4 = 0 if W are eigenvalues of T (no sort),',
     $      '  1/ulp otherwise', /
     $      ' 5 = 0 if T same no matter if VS computed (no sort),',
     $      '  1/ulp otherwise', /
     $      ' 6 = 0 if W same no matter if VS computed (no sort)',
     $      ',  1/ulp otherwise' )
 9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', '  1/ulp otherwise',
     $      / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
     $      / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
     $      / ' 10 = 0 if W are eigenvalues of T (sort),',
     $      '  1/ulp otherwise', /
     $      ' 11 = 0 if T same no matter if VS computed (sort),',
     $      '  1/ulp otherwise', /
     $      ' 12 = 0 if W same no matter if VS computed (sort),',
     $      '  1/ulp otherwise', /
     $      ' 13 = 0 if sorting succesful, 1/ulp otherwise', / )
 9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
     $      ' type ', I2, ', test(', I2, ')=', G10.3 )
 9992 FORMAT( ' ZDRVES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
      RETURN
*
*     End of ZDRVES
*
      END
 |