1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
SUBROUTINE CLARRV( N, D, L, ISPLIT, M, W, IBLOCK, GERSCH, TOL, Z,
$ LDZ, ISUPPZ, WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (instru to count ops, version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDZ, M, N
REAL TOL
* ..
* .. Array Arguments ..
INTEGER IBLOCK( * ), ISPLIT( * ), ISUPPZ( * ),
$ IWORK( * )
REAL D( * ), GERSCH( * ), L( * ), W( * ), WORK( * )
COMPLEX Z( LDZ, * )
* ..
* Common block to return operation count ..
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
REAL ITCNT, OPS
* ..
*
* Purpose
* =======
*
* CLARRV computes the eigenvectors of the tridiagonal matrix
* T = L D L^T given L, D and the eigenvalues of L D L^T.
* The input eigenvalues should have high relative accuracy with
* respect to the entries of L and D. The desired accuracy of the
* output can be specified by the input parameter TOL.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* D (input/output) REAL array, dimension (N)
* On entry, the n diagonal elements of the diagonal matrix D.
* On exit, D may be overwritten.
*
* L (input/output) REAL array, dimension (N-1)
* On entry, the (n-1) subdiagonal elements of the unit
* bidiagonal matrix L in elements 1 to N-1 of L. L(N) need
* not be set. On exit, L is overwritten.
*
* ISPLIT (input) INTEGER array, dimension (N)
* The splitting points, at which T breaks up into submatrices.
* The first submatrix consists of rows/columns 1 to
* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
* through ISPLIT( 2 ), etc.
*
* TOL (input) REAL
* The absolute error tolerance for the
* eigenvalues/eigenvectors.
* Errors in the input eigenvalues must be bounded by TOL.
* The eigenvectors output have residual norms
* bounded by TOL, and the dot products between different
* eigenvectors are bounded by TOL. TOL must be at least
* N*EPS*|T|, where EPS is the machine precision and |T| is
* the 1-norm of the tridiagonal matrix.
*
* M (input) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (input) REAL array, dimension (N)
* The first M elements of W contain the eigenvalues for
* which eigenvectors are to be computed. The eigenvalues
* should be grouped by split-off block and ordered from
* smallest to largest within the block ( The output array
* W from SLARRE is expected here ).
* Errors in W must be bounded by TOL (see above).
*
* IBLOCK (input) INTEGER array, dimension (N)
* The submatrix indices associated with the corresponding
* eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
* the first submatrix from the top, =2 if W(i) belongs to
* the second submatrix, etc.
*
* Z (output) COMPLEX array, dimension (LDZ, max(1,M) )
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix T
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The i-th eigenvector
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
* ISUPPZ( 2*i ).
*
* WORK (workspace) REAL array, dimension (13*N)
*
* IWORK (workspace) INTEGER array, dimension (6*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = 1, internal error in SLARRB
* if INFO = 2, internal error in CSTEIN
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
* Ken Stanley, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
INTEGER MGSSIZ
PARAMETER ( MGSSIZ = 20 )
REAL ZERO, ONE, FOUR
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, FOUR = 4.0E0 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
LOGICAL MGSCLS
INTEGER I, IBEGIN, IEND, IINDC1, IINDC2, IINDR, IINDWK,
$ IINFO, IM, IN, INDERR, INDGAP, INDIN1, INDIN2,
$ INDLD, INDLLD, INDWRK, ITER, ITMP1, ITMP2, J,
$ JBLK, K, KTOT, LSBDPT, MAXITR, NCLUS, NDEPTH,
$ NDONE, NEWCLS, NEWFRS, NEWFTT, NEWLST, NEWSIZ,
$ NSPLIT, OLDCLS, OLDFST, OLDIEN, OLDLST, OLDNCL,
$ P, Q, TEMP( 1 )
REAL EPS, GAP, LAMBDA, MGSTOL, MINGMA, MINRGP,
$ NRMINV, RELGAP, RELTOL, RESID, RQCORR, SIGMA,
$ TMP1, ZTZ
* ..
* .. External Functions ..
REAL SCNRM2, SLAMCH
COMPLEX CDOTU
EXTERNAL CDOTU, SCNRM2, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CLAR1V, CLASET, CSTEIN, SCOPY, SLARRB
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, MAX, MIN, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INDERR = N + 1
INDLD = 2*N
INDLLD = 3*N
INDGAP = 4*N
INDIN1 = 5*N + 1
INDIN2 = 6*N + 1
INDWRK = 7*N + 1
*
IINDR = N
IINDC1 = 2*N
IINDC2 = 3*N
IINDWK = 4*N + 1
*
EPS = SLAMCH( 'Precision' )
*
DO 10 I = 1, 2*N
IWORK( I ) = 0
10 CONTINUE
OPS = OPS + REAL( M+1 )
DO 20 I = 1, M
WORK( INDERR+I-1 ) = EPS*ABS( W( I ) )
20 CONTINUE
CALL CLASET( 'Full', N, N, CZERO, CZERO, Z, LDZ )
MGSTOL = 5.0E0*EPS
*
NSPLIT = IBLOCK( M )
IBEGIN = 1
DO 170 JBLK = 1, NSPLIT
IEND = ISPLIT( JBLK )
*
* Find the eigenvectors of the submatrix indexed IBEGIN
* through IEND.
*
IF( IBEGIN.EQ.IEND ) THEN
Z( IBEGIN, IBEGIN ) = ONE
ISUPPZ( 2*IBEGIN-1 ) = IBEGIN
ISUPPZ( 2*IBEGIN ) = IBEGIN
IBEGIN = IEND + 1
GO TO 170
END IF
OLDIEN = IBEGIN - 1
IN = IEND - OLDIEN
OPS = OPS + REAL( 1 )
RELTOL = MIN( 1.0E-2, ONE / REAL( IN ) )
IM = IN
CALL SCOPY( IM, W( IBEGIN ), 1, WORK, 1 )
OPS = OPS + REAL( IN-1 )
DO 30 I = 1, IN - 1
WORK( INDGAP+I ) = WORK( I+1 ) - WORK( I )
30 CONTINUE
WORK( INDGAP+IN ) = MAX( ABS( WORK( IN ) ), EPS )
NDONE = 0
*
NDEPTH = 0
LSBDPT = 1
NCLUS = 1
IWORK( IINDC1+1 ) = 1
IWORK( IINDC1+2 ) = IN
*
* While( NDONE.LT.IM ) do
*
40 CONTINUE
IF( NDONE.LT.IM ) THEN
OLDNCL = NCLUS
NCLUS = 0
LSBDPT = 1 - LSBDPT
DO 150 I = 1, OLDNCL
IF( LSBDPT.EQ.0 ) THEN
OLDCLS = IINDC1
NEWCLS = IINDC2
ELSE
OLDCLS = IINDC2
NEWCLS = IINDC1
END IF
*
* If NDEPTH > 1, retrieve the relatively robust
* representation (RRR) and perform limited bisection
* (if necessary) to get approximate eigenvalues.
*
J = OLDCLS + 2*I
OLDFST = IWORK( J-1 )
OLDLST = IWORK( J )
IF( NDEPTH.GT.0 ) THEN
J = OLDIEN + OLDFST
DO 45 K = 1, IN
D( IBEGIN+K-1 ) = REAL( Z( IBEGIN+K-1,
$ OLDIEN+OLDFST ) )
L( IBEGIN+K-1 ) = REAL( Z( IBEGIN+K-1,
$ OLDIEN+OLDFST+1 ) )
45 CONTINUE
SIGMA = L( IEND )
END IF
K = IBEGIN
OPS = OPS + REAL( 2*(IN-1) )
DO 50 J = 1, IN - 1
WORK( INDLD+J ) = D( K )*L( K )
WORK( INDLLD+J ) = WORK( INDLD+J )*L( K )
K = K + 1
50 CONTINUE
IF( NDEPTH.GT.0 ) THEN
CALL SLARRB( IN, D( IBEGIN ), L( IBEGIN ),
$ WORK( INDLD+1 ), WORK( INDLLD+1 ),
$ OLDFST, OLDLST, SIGMA, RELTOL, WORK,
$ WORK( INDGAP+1 ), WORK( INDERR ),
$ WORK( INDWRK ), IWORK( IINDWK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
END IF
*
* Classify eigenvalues of the current representation (RRR)
* as (i) isolated, (ii) loosely clustered or (iii) tightly
* clustered
*
NEWFRS = OLDFST
DO 140 J = OLDFST, OLDLST
OPS = OPS + REAL( 1 )
IF( J.EQ.OLDLST .OR. WORK( INDGAP+J ).GE.RELTOL*
$ ABS( WORK( J ) ) ) THEN
NEWLST = J
ELSE
*
* continue (to the next loop)
*
OPS = OPS + REAL( 1 )
RELGAP = WORK( INDGAP+J ) / ABS( WORK( J ) )
IF( J.EQ.NEWFRS ) THEN
MINRGP = RELGAP
ELSE
MINRGP = MIN( MINRGP, RELGAP )
END IF
GO TO 140
END IF
NEWSIZ = NEWLST - NEWFRS + 1
MAXITR = 10
NEWFTT = OLDIEN + NEWFRS
IF( NEWSIZ.GT.1 ) THEN
MGSCLS = NEWSIZ.LE.MGSSIZ .AND. MINRGP.GE.MGSTOL
IF( .NOT.MGSCLS ) THEN
DO 55 K = 1, IN
WORK( INDIN1+K-1 ) = REAL( Z( IBEGIN+K-1,
$ NEWFTT ) )
WORK( INDIN2+K-1 ) = REAL( Z( IBEGIN+K-1,
$ NEWFTT+1 ) )
55 CONTINUE
CALL SLARRF( IN, D( IBEGIN ), L( IBEGIN ),
$ WORK( INDLD+1 ), WORK( INDLLD+1 ),
$ NEWFRS, NEWLST, WORK,
$ WORK( INDIN1 ), WORK( INDIN2 ),
$ WORK( INDWRK ), IWORK( IINDWK ),
$ INFO )
IF( INFO.EQ.0 ) THEN
NCLUS = NCLUS + 1
K = NEWCLS + 2*NCLUS
IWORK( K-1 ) = NEWFRS
IWORK( K ) = NEWLST
ELSE
INFO = 0
IF( MINRGP.GE.MGSTOL ) THEN
MGSCLS = .TRUE.
ELSE
*
* Call CSTEIN to process this tight cluster.
* This happens only if MINRGP <= MGSTOL
* and SLARRF returns INFO = 1. The latter
* means that a new RRR to "break" the
* cluster could not be found.
*
WORK( INDWRK ) = D( IBEGIN )
OPS = OPS + REAL( IN-1 )
DO 60 K = 1, IN - 1
WORK( INDWRK+K ) = D( IBEGIN+K ) +
$ WORK( INDLLD+K )
60 CONTINUE
DO 70 K = 1, NEWSIZ
IWORK( IINDWK+K-1 ) = 1
70 CONTINUE
DO 80 K = NEWFRS, NEWLST
ISUPPZ( 2*( IBEGIN+K )-3 ) = 1
ISUPPZ( 2*( IBEGIN+K )-2 ) = IN
80 CONTINUE
TEMP( 1 ) = IN
CALL CSTEIN( IN, WORK( INDWRK ),
$ WORK( INDLD+1 ), NEWSIZ,
$ WORK( NEWFRS ),
$ IWORK( IINDWK ), TEMP( 1 ),
$ Z( IBEGIN, NEWFTT ), LDZ,
$ WORK( INDWRK+IN ),
$ IWORK( IINDWK+IN ),
$ IWORK( IINDWK+2*IN ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 2
RETURN
END IF
NDONE = NDONE + NEWSIZ
END IF
END IF
END IF
ELSE
MGSCLS = .FALSE.
END IF
IF( NEWSIZ.EQ.1 .OR. MGSCLS ) THEN
KTOT = NEWFTT
DO 100 K = NEWFRS, NEWLST
ITER = 0
90 CONTINUE
LAMBDA = WORK( K )
CALL CLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
$ L( IBEGIN ), WORK( INDLD+1 ),
$ WORK( INDLLD+1 ),
$ GERSCH( 2*OLDIEN+1 ),
$ Z( IBEGIN, KTOT ), ZTZ, MINGMA,
$ IWORK( IINDR+KTOT ),
$ ISUPPZ( 2*KTOT-1 ),
$ WORK( INDWRK ) )
OPS = OPS + REAL( 4 )
TMP1 = ONE / ZTZ
NRMINV = SQRT( TMP1 )
RESID = ABS( MINGMA )*NRMINV
RQCORR = MINGMA*TMP1
IF( K.EQ.IN ) THEN
GAP = WORK( INDGAP+K-1 )
ELSE IF( K.EQ.1 ) THEN
GAP = WORK( INDGAP+K )
ELSE
GAP = MIN( WORK( INDGAP+K-1 ),
$ WORK( INDGAP+K ) )
END IF
ITER = ITER + 1
OPS = OPS + REAL( 3 )
IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
$ FOUR*EPS*ABS( LAMBDA ) ) THEN
OPS = OPS + REAL( 1 )
WORK( K ) = LAMBDA + RQCORR
IF( ITER.LT.MAXITR ) THEN
GO TO 90
END IF
END IF
IWORK( KTOT ) = 1
IF( NEWSIZ.EQ.1 )
$ NDONE = NDONE + 1
OPS = OPS + REAL( 2*IN )
CALL CSSCAL( IN, NRMINV, Z( IBEGIN, KTOT ), 1 )
KTOT = KTOT + 1
100 CONTINUE
IF( NEWSIZ.GT.1 ) THEN
ITMP1 = ISUPPZ( 2*NEWFTT-1 )
ITMP2 = ISUPPZ( 2*NEWFTT )
KTOT = OLDIEN + NEWLST
DO 120 P = NEWFTT + 1, KTOT
DO 110 Q = NEWFTT, P - 1
OPS = OPS + REAL( 10*IN )
TMP1 = -CDOTU( IN, Z( IBEGIN, P ), 1,
$ Z( IBEGIN, Q ), 1 )
CALL CAXPY( IN, CMPLX( TMP1, ZERO ),
$ Z( IBEGIN, Q ), 1,
$ Z( IBEGIN, P ), 1 )
110 CONTINUE
OPS = OPS + REAL( 8*IN+1 )
TMP1 = ONE / SCNRM2( IN, Z( IBEGIN, P ), 1 )
CALL CSSCAL( IN, TMP1, Z( IBEGIN, P ), 1 )
ITMP1 = MIN( ITMP1, ISUPPZ( 2*P-1 ) )
ITMP2 = MAX( ITMP2, ISUPPZ( 2*P ) )
120 CONTINUE
DO 130 P = NEWFTT, KTOT
ISUPPZ( 2*P-1 ) = ITMP1
ISUPPZ( 2*P ) = ITMP2
130 CONTINUE
NDONE = NDONE + NEWSIZ
END IF
END IF
NEWFRS = J + 1
140 CONTINUE
150 CONTINUE
NDEPTH = NDEPTH + 1
GO TO 40
END IF
J = 2*IBEGIN
DO 160 I = IBEGIN, IEND
ISUPPZ( J-1 ) = ISUPPZ( J-1 ) + OLDIEN
ISUPPZ( J ) = ISUPPZ( J ) + OLDIEN
J = J + 2
160 CONTINUE
IBEGIN = IEND + 1
170 CONTINUE
*
RETURN
*
* End of CLARRV
*
END
|