1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
SUBROUTINE CSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
$ M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
*
* -- LAPACK computational routine (instru to count ops, version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE
INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
REAL D( * ), E( * ), W( * ), WORK( * )
COMPLEX Z( LDZ, * )
* ..
* Common block to return operation count ..
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
REAL ITCNT, OPS
* ..
*
* Purpose
* =======
*
* CSTEGR computes eigenvalues by the dqds algorithm, while
* orthogonal eigenvectors are computed from various "good" L D L^T
* representations (also known as Relatively Robust Representations).
* Gram-Schmidt orthogonalization is avoided as far as possible. More
* specifically, the various steps of the algorithm are as follows.
* For the i-th unreduced block of T,
* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
* is a relatively robust representation,
* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
* relative accuracy by the dqds algorithm,
* (c) If there is a cluster of close eigenvalues, "choose" sigma_i
* close to the cluster, and go to step (a),
* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
* compute the corresponding eigenvector by forming a
* rank-revealing twisted factorization.
* The desired accuracy of the output can be specified by the input
* parameter ABSTOL.
*
* For more details, see "A new O(n^2) algorithm for the symmetric
* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
* Computer Science Division Technical Report No. UCB/CSD-97-971,
* UC Berkeley, May 1997.
*
* Note 1 : Currently CSTEGR is only set up to find ALL the n
* eigenvalues and eigenvectors of T in O(n^2) time
* Note 2 : Currently the routine CSTEIN is called when an appropriate
* sigma_i cannot be chosen in step (c) above. CSTEIN invokes modified
* Gram-Schmidt when eigenvalues are close.
* Note 3 : CSTEGR works only on machines which follow ieee-754
* floating-point standard in their handling of infinities and NaNs.
* Normal execution of CSTEGR may create NaNs and infinities and hence
* may abort due to a floating point exception in environments which
* do not conform to the ieee standard.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
********** Only RANGE = 'A' is currently supported *********************
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* D (input/output) REAL array, dimension (N)
* On entry, the n diagonal elements of the tridiagonal matrix
* T. On exit, D is overwritten.
*
* E (input/output) REAL array, dimension (N)
* On entry, the (n-1) subdiagonal elements of the tridiagonal
* matrix T in elements 1 to N-1 of E; E(N) need not be set.
* On exit, E is overwritten.
*
* VL (input) REAL
* VU (input) REAL
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) REAL
* The absolute error tolerance for the
* eigenvalues/eigenvectors. IF JOBZ = 'V', the eigenvalues and
* eigenvectors output have residual norms bounded by ABSTOL,
* and the dot products between different eigenvectors are
* bounded by ABSTOL. If ABSTOL is less than N*EPS*|T|, then
* N*EPS*|T| will be used in its place, where EPS is the
* machine precision and |T| is the 1-norm of the tridiagonal
* matrix. The eigenvalues are computed to an accuracy of
* EPS*|T| irrespective of ABSTOL. If high relative accuracy
* is important, set ABSTOL to DLAMCH( 'Safe minimum' ).
* See Barlow and Demmel "Computing Accurate Eigensystems of
* Scaled Diagonally Dominant Matrices", LAPACK Working Note #7
* for a discussion of which matrices define their eigenvalues
* to high relative accuracy.
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) REAL array, dimension (N)
* The first M elements contain the selected eigenvalues in
* ascending order.
*
* Z (output) COMPLEX array, dimension (LDZ, max(1,M) )
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix T
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The i-th eigenvector
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
* ISUPPZ( 2*i ).
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal
* (and minimal) LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,18*N)
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK. LIWORK >= max(1,10*N)
*
* If LIWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal size of the IWORK array,
* returns this value as the first entry of the IWORK array, and
* no error message related to LIWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = 1, internal error in SLARRE,
* if INFO = 2, internal error in CLARRV.
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
* Ken Stanley, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ
INTEGER I, IBEGIN, IEND, IINDBL, IINDWK, IINFO, IINSPL,
$ INDGRS, INDWOF, INDWRK, ITMP, J, JJ, LIWMIN,
$ LWMIN, NSPLIT
REAL BIGNUM, EPS, RMAX, RMIN, SAFMIN, SCALE, SMLNUM,
$ THRESH, TMP, TNRM, TOL
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANST
EXTERNAL LSAME, SLAMCH, SLANST
* ..
* .. External Subroutines ..
EXTERNAL CLARRV, CLASET, CSWAP, SLARRE, SSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
*
LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
LWMIN = 18*N
LIWMIN = 10*N
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
*
* The following two lines need to be removed once the
* RANGE = 'V' and RANGE = 'I' options are provided.
*
ELSE IF( VALEIG .OR. INDEIG ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
INFO = -7
ELSE IF( INDEIG .AND. IL.LT.1 ) THEN
INFO = -8
* The following change should be made in DSTEVX also, otherwise
* IL can be specified as N+1 and IU as N.
* ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) ) THEN
ELSE IF( INDEIG .AND. ( IU.LT.IL .OR. IU.GT.N ) ) THEN
INFO = -9
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -14
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -17
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -19
END IF
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSTEGR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 )
$ RETURN
*
IF( N.EQ.1 ) THEN
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = D( 1 )
ELSE
IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
M = 1
W( 1 ) = D( 1 )
END IF
END IF
IF( WANTZ )
$ Z( 1, 1 ) = ONE
RETURN
END IF
*
* Get machine constants.
*
OPS = OPS + REAL( 7 )
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
* Scale matrix to allowable range, if necessary.
*
SCALE = ONE
TNRM = SLANST( 'M', N, D, E )
IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
OPS = OPS + REAL( 1 )
SCALE = RMIN / TNRM
ELSE IF( TNRM.GT.RMAX ) THEN
OPS = OPS + REAL( 1 )
SCALE = RMAX / TNRM
END IF
IF( SCALE.NE.ONE ) THEN
OPS = OPS + REAL( 2*N )
CALL SSCAL( N, SCALE, D, 1 )
CALL SSCAL( N-1, SCALE, E, 1 )
TNRM = TNRM*SCALE
END IF
INDGRS = 1
INDWOF = 2*N + 1
INDWRK = 3*N + 1
*
IINSPL = 1
IINDBL = N + 1
IINDWK = 2*N + 1
*
CALL CLASET( 'Full', N, N, CZERO, CZERO, Z, LDZ )
*
* Compute the desired eigenvalues of the tridiagonal after splitting
* into smaller subblocks if the corresponding of-diagonal elements
* are small
*
OPS = OPS + REAL( 1 )
THRESH = EPS*TNRM
CALL SLARRE( N, D, E, THRESH, NSPLIT, IWORK( IINSPL ), M, W,
$ WORK( INDWOF ), WORK( INDGRS ), WORK( INDWRK ),
$ IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
*
IF( WANTZ ) THEN
*
* Compute the desired eigenvectors corresponding to the computed
* eigenvalues
*
OPS = OPS + REAL( 1 )
TOL = MAX( ABSTOL, REAL( N )*THRESH )
IBEGIN = 1
DO 20 I = 1, NSPLIT
IEND = IWORK( IINSPL+I-1 )
DO 10 J = IBEGIN, IEND
IWORK( IINDBL+J-1 ) = I
10 CONTINUE
IBEGIN = IEND + 1
20 CONTINUE
*
CALL CLARRV( N, D, E, IWORK( IINSPL ), M, W, IWORK( IINDBL ),
$ WORK( INDGRS ), TOL, Z, LDZ, ISUPPZ,
$ WORK( INDWRK ), IWORK( IINDWK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 2
RETURN
END IF
*
END IF
*
IBEGIN = 1
DO 40 I = 1, NSPLIT
IEND = IWORK( IINSPL+I-1 )
DO 30 J = IBEGIN, IEND
OPS = OPS + REAL( 1 )
W( J ) = W( J ) + WORK( INDWOF+I-1 )
30 CONTINUE
IBEGIN = IEND + 1
40 CONTINUE
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( SCALE.NE.ONE ) THEN
CALL SSCAL( M, ONE / SCALE, W, 1 )
END IF
*
* If eigenvalues are not in order, then sort them, along with
* eigenvectors.
*
IF( NSPLIT.GT.1 ) THEN
DO 60 J = 1, M - 1
I = 0
TMP = W( J )
DO 50 JJ = J + 1, M
IF( W( JJ ).LT.TMP ) THEN
I = JJ
TMP = W( JJ )
END IF
50 CONTINUE
IF( I.NE.0 ) THEN
W( I ) = W( J )
W( J ) = TMP
IF( WANTZ ) THEN
CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
ITMP = ISUPPZ( 2*I-1 )
ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
ISUPPZ( 2*J-1 ) = ITMP
ITMP = ISUPPZ( 2*I )
ISUPPZ( 2*I ) = ISUPPZ( 2*J )
ISUPPZ( 2*J ) = ITMP
END IF
END IF
60 CONTINUE
END IF
*
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
RETURN
*
* End of CSTEGR
*
END
|