File: cstegr.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (416 lines) | stat: -rw-r--r-- 14,738 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
      SUBROUTINE CSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
     $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
     $                   LIWORK, INFO )
*
*  -- LAPACK computational routine (instru to count ops, version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE
      INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
      REAL               ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            ISUPPZ( * ), IWORK( * )
      REAL               D( * ), E( * ), W( * ), WORK( * )
      COMPLEX            Z( LDZ, * )
*     ..
*     Common block to return operation count ..
*     .. Common blocks ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      REAL               ITCNT, OPS
*     ..
*
*  Purpose
*  =======
*
*  CSTEGR computes eigenvalues by the dqds algorithm, while
*  orthogonal eigenvectors are computed from various "good" L D L^T
*  representations (also known as Relatively Robust Representations).
*  Gram-Schmidt orthogonalization is avoided as far as possible. More
*  specifically, the various steps of the algorithm are as follows.
*  For the i-th unreduced block of T,
*     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
*         is a relatively robust representation,
*     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
*         relative accuracy by the dqds algorithm,
*     (c) If there is a cluster of close eigenvalues, "choose" sigma_i
*         close to the cluster, and go to step (a),
*     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
*         compute the corresponding eigenvector by forming a
*         rank-revealing twisted factorization.
*  The desired accuracy of the output can be specified by the input
*  parameter ABSTOL.
*
*  For more details, see "A new O(n^2) algorithm for the symmetric
*  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
*  Computer Science Division Technical Report No. UCB/CSD-97-971,
*  UC Berkeley, May 1997.
*
*  Note 1 : Currently CSTEGR is only set up to find ALL the n
*  eigenvalues and eigenvectors of T in O(n^2) time
*  Note 2 : Currently the routine CSTEIN is called when an appropriate
*  sigma_i cannot be chosen in step (c) above. CSTEIN invokes modified
*  Gram-Schmidt when eigenvalues are close.
*  Note 3 : CSTEGR works only on machines which follow ieee-754
*  floating-point standard in their handling of infinities and NaNs.
*  Normal execution of CSTEGR may create NaNs and infinities and hence
*  may abort due to a floating point exception in environments which
*  do not conform to the ieee standard.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (input) CHARACTER*1
*          = 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in the half-open interval (VL,VU]
*                 will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
********** Only RANGE = 'A' is currently supported *********************
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the n diagonal elements of the tridiagonal matrix
*          T. On exit, D is overwritten.
*
*  E       (input/output) REAL array, dimension (N)
*          On entry, the (n-1) subdiagonal elements of the tridiagonal
*          matrix T in elements 1 to N-1 of E; E(N) need not be set.
*          On exit, E is overwritten.
*
*  VL      (input) REAL
*  VU      (input) REAL
*          If RANGE='V', the lower and upper bounds of the interval to
*          be searched for eigenvalues. VL < VU.
*          Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (input) INTEGER
*  IU      (input) INTEGER
*          If RANGE='I', the indices (in ascending order) of the
*          smallest and largest eigenvalues to be returned.
*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  ABSTOL  (input) REAL
*          The absolute error tolerance for the
*          eigenvalues/eigenvectors. IF JOBZ = 'V', the eigenvalues and
*          eigenvectors output have residual norms bounded by ABSTOL,
*          and the dot products between different eigenvectors are
*          bounded by ABSTOL. If ABSTOL is less than N*EPS*|T|, then
*          N*EPS*|T| will be used in its place, where EPS is the
*          machine precision and |T| is the 1-norm of the tridiagonal
*          matrix. The eigenvalues are computed to an accuracy of
*          EPS*|T| irrespective of ABSTOL. If high relative accuracy
*          is important, set ABSTOL to DLAMCH( 'Safe minimum' ).
*          See Barlow and Demmel "Computing Accurate Eigensystems of
*          Scaled Diagonally Dominant Matrices", LAPACK Working Note #7
*          for a discussion of which matrices define their eigenvalues
*          to high relative accuracy.
*
*  M       (output) INTEGER
*          The total number of eigenvalues found.  0 <= M <= N.
*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
*  W       (output) REAL array, dimension (N)
*          The first M elements contain the selected eigenvalues in
*          ascending order.
*
*  Z       (output) COMPLEX array, dimension (LDZ, max(1,M) )
*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix T
*          corresponding to the selected eigenvalues, with the i-th
*          column of Z holding the eigenvector associated with W(i).
*          If JOBZ = 'N', then Z is not referenced.
*          Note: the user must ensure that at least max(1,M) columns are
*          supplied in the array Z; if RANGE = 'V', the exact value of M
*          is not known in advance and an upper bound must be used.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
*          The support of the eigenvectors in Z, i.e., the indices
*          indicating the nonzero elements in Z. The i-th eigenvector
*          is nonzero only in elements ISUPPZ( 2*i-1 ) through
*          ISUPPZ( 2*i ).
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal
*          (and minimal) LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,18*N)
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = 1, internal error in SLARRE,
*                if INFO = 2, internal error in CLARRV.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Inderjit Dhillon, IBM Almaden, USA
*     Osni Marques, LBNL/NERSC, USA
*     Ken Stanley, Computer Science Division, University of
*       California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ
      INTEGER            I, IBEGIN, IEND, IINDBL, IINDWK, IINFO, IINSPL, 
     $                   INDGRS, INDWOF, INDWRK, ITMP, J, JJ, LIWMIN, 
     $                   LWMIN, NSPLIT
      REAL               BIGNUM, EPS, RMAX, RMIN, SAFMIN, SCALE, SMLNUM,
     $                   THRESH, TMP, TNRM, TOL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANST
      EXTERNAL           LSAME, SLAMCH, SLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLARRV, CLASET, CSWAP, SLARRE, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
*
      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
      LWMIN = 18*N
      LIWMIN = 10*N
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -2
*
*     The following two lines need to be removed once the 
*     RANGE = 'V' and RANGE = 'I' options are provided.
*
      ELSE IF( VALEIG .OR. INDEIG ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
         INFO = -7
      ELSE IF( INDEIG .AND. IL.LT.1 ) THEN
         INFO = -8
*     The following change should be made in DSTEVX also, otherwise
*     IL can be specified as N+1 and IU as N.
*     ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) ) THEN
      ELSE IF( INDEIG .AND. ( IU.LT.IL .OR. IU.GT.N ) ) THEN
         INFO = -9
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -14
      ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -17
      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -19
      END IF
      IF( INFO.EQ.0 ) THEN
         WORK( 1 ) = LWMIN
         IWORK( 1 ) = LIWMIN
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSTEGR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      M = 0
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ALLEIG .OR. INDEIG ) THEN
            M = 1
            W( 1 ) = D( 1 )
         ELSE
            IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
               M = 1
               W( 1 ) = D( 1 )
            END IF
         END IF
         IF( WANTZ )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Get machine constants.
*
      OPS = OPS + REAL( 7 )
      SAFMIN = SLAMCH( 'Safe minimum' )
      EPS = SLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
*     Scale matrix to allowable range, if necessary.
*
      SCALE = ONE
      TNRM = SLANST( 'M', N, D, E )
      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
         OPS = OPS + REAL( 1 )
         SCALE = RMIN / TNRM
      ELSE IF( TNRM.GT.RMAX ) THEN
         OPS = OPS + REAL( 1 )
         SCALE = RMAX / TNRM
      END IF
      IF( SCALE.NE.ONE ) THEN
         OPS = OPS + REAL( 2*N )
         CALL SSCAL( N, SCALE, D, 1 )
         CALL SSCAL( N-1, SCALE, E, 1 )
         TNRM = TNRM*SCALE
      END IF
      INDGRS = 1
      INDWOF = 2*N + 1
      INDWRK = 3*N + 1
*
      IINSPL = 1
      IINDBL = N + 1
      IINDWK = 2*N + 1
*
      CALL CLASET( 'Full', N, N, CZERO, CZERO, Z, LDZ )
*
*     Compute the desired eigenvalues of the tridiagonal after splitting
*     into smaller subblocks if the corresponding of-diagonal elements
*     are small
*
      OPS = OPS + REAL( 1 )
      THRESH = EPS*TNRM
      CALL SLARRE( N, D, E, THRESH, NSPLIT, IWORK( IINSPL ), M, W,
     $             WORK( INDWOF ), WORK( INDGRS ), WORK( INDWRK ),
     $             IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = 1
         RETURN
      END IF
*
      IF( WANTZ ) THEN
*
*        Compute the desired eigenvectors corresponding to the computed
*        eigenvalues
*
         OPS = OPS + REAL( 1 )
         TOL = MAX( ABSTOL, REAL( N )*THRESH )
         IBEGIN = 1
         DO 20 I = 1, NSPLIT
            IEND = IWORK( IINSPL+I-1 )
            DO 10 J = IBEGIN, IEND
               IWORK( IINDBL+J-1 ) = I
   10       CONTINUE
            IBEGIN = IEND + 1
   20    CONTINUE
*
         CALL CLARRV( N, D, E, IWORK( IINSPL ), M, W, IWORK( IINDBL ),
     $                WORK( INDGRS ), TOL, Z, LDZ, ISUPPZ,
     $                WORK( INDWRK ), IWORK( IINDWK ), IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 2
            RETURN
         END IF
*
      END IF
*
      IBEGIN = 1
      DO 40 I = 1, NSPLIT
         IEND = IWORK( IINSPL+I-1 )
         DO 30 J = IBEGIN, IEND
            OPS = OPS + REAL( 1 )
            W( J ) = W( J ) + WORK( INDWOF+I-1 )
   30    CONTINUE
         IBEGIN = IEND + 1
   40 CONTINUE
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
      IF( SCALE.NE.ONE ) THEN
         CALL SSCAL( M, ONE / SCALE, W, 1 )
      END IF
*
*     If eigenvalues are not in order, then sort them, along with
*     eigenvectors.
*
      IF( NSPLIT.GT.1 ) THEN
         DO 60 J = 1, M - 1
            I = 0
            TMP = W( J )
            DO 50 JJ = J + 1, M
               IF( W( JJ ).LT.TMP ) THEN
                  I = JJ
                  TMP = W( JJ )
               END IF
   50       CONTINUE
            IF( I.NE.0 ) THEN
               W( I ) = W( J )
               W( J ) = TMP
               IF( WANTZ ) THEN
                  CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                  ITMP = ISUPPZ( 2*I-1 )
                  ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
                  ISUPPZ( 2*J-1 ) = ITMP
                  ITMP = ISUPPZ( 2*I )
                  ISUPPZ( 2*I ) = ISUPPZ( 2*J )
                  ISUPPZ( 2*J ) = ITMP
               END IF
            END IF
   60    CONTINUE
      END IF
*
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
      RETURN
*
*     End of CSTEGR
*
      END