1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
SUBROUTINE DLARRF( N, D, L, LD, LLD, IFIRST, ILAST, W, DPLUS,
$ LPLUS, WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (instru to count ops, version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER IFIRST, ILAST, INFO, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), DPLUS( * ), L( * ), LD( * ), LLD( * ),
$ LPLUS( * ), W( * ), WORK( * )
* ..
* Common block to return operation count
* .. Common blocks ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
DOUBLE PRECISION ITCNT, OPS
* ..
*
* Purpose
* =======
*
* Given the initial representation L D L^T and its cluster of close
* eigenvalues (in a relative measure), W( IFIRST ), W( IFIRST+1 ), ...
* W( ILAST ), DLARRF finds a new relatively robust representation
* L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
* eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The n diagonal elements of the diagonal matrix D.
*
* L (input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) subdiagonal elements of the unit bidiagonal
* matrix L.
*
* LD (input) DOUBLE PRECISION array, dimension (N-1)
* The n-1 elements L(i)*D(i).
*
* LLD (input) DOUBLE PRECISION array, dimension (N-1)
* The n-1 elements L(i)*L(i)*D(i).
*
* IFIRST (input) INTEGER
* The index of the first eigenvalue in the cluster.
*
* ILAST (input) INTEGER
* The index of the last eigenvalue in the cluster.
*
* W (input/output) DOUBLE PRECISION array, dimension (N)
* On input, the eigenvalues of L D L^T in ascending order.
* W( IFIRST ) through W( ILAST ) form the cluster of relatively
* close eigenalues.
* On output, W( IFIRST ) thru' W( ILAST ) are estimates of the
* corresponding eigenvalues of L(+) D(+) L(+)^T.
*
* SIGMA (input) DOUBLE PRECISION
* The shift used to form L(+) D(+) L(+)^T.
*
* DPLUS (output) DOUBLE PRECISION array, dimension (N)
* The n diagonal elements of the diagonal matrix D(+).
*
* LPLUS (output) DOUBLE PRECISION array, dimension (N)
* The first (n-1) elements of LPLUS contain the subdiagonal
* elements of the unit bidiagonal matrix L(+). LPLUS( N ) is
* set to SIGMA.
*
* WORK (input) DOUBLE PRECISION array, dimension (???)
* Workspace.
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, TWO
PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0 )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION DELTA, EPS, S, SIGMA
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE
* ..
* .. Executable Statements ..
*
INFO = 0
EPS = DLAMCH( 'Precision' )
IF( IFIRST.EQ.1 ) THEN
SIGMA = W( IFIRST )
ELSE IF( ILAST.EQ.N ) THEN
SIGMA = W( ILAST )
ELSE
INFO = 1
RETURN
END IF
*
* Compute the new relatively robust representation (RRR)
*
OPS = OPS + DBLE( 3 )
DELTA = TWO*EPS
10 CONTINUE
IF( IFIRST.EQ.1 ) THEN
SIGMA = SIGMA - ABS( SIGMA )*DELTA
ELSE
SIGMA = SIGMA + ABS( SIGMA )*DELTA
END IF
S = -SIGMA
OPS = OPS + DBLE( 5*( N-1 )+1 )
DO 20 I = 1, N - 1
DPLUS( I ) = D( I ) + S
LPLUS( I ) = LD( I ) / DPLUS( I )
S = S*LPLUS( I )*L( I ) - SIGMA
20 CONTINUE
DPLUS( N ) = D( N ) + S
IF( IFIRST.EQ.1 ) THEN
DO 30 I = 1, N
IF( DPLUS( I ).LT.ZERO ) THEN
OPS = OPS + DBLE( 1 )
DELTA = TWO*DELTA
GO TO 10
END IF
30 CONTINUE
ELSE
DO 40 I = 1, N
IF( DPLUS( I ).GT.ZERO ) THEN
OPS = OPS + DBLE( 1 )
DELTA = TWO*DELTA
GO TO 10
END IF
40 CONTINUE
END IF
DO 50 I = IFIRST, ILAST
OPS = OPS + DBLE( 1 )
W( I ) = W( I ) - SIGMA
50 CONTINUE
LPLUS( N ) = SIGMA
*
RETURN
*
* End of DLARRF
*
END
|