File: dlasd5.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (184 lines) | stat: -rw-r--r-- 5,878 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
      SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
*  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --
*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
*     Courant Institute, NAG Ltd., and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            I
      DOUBLE PRECISION   DSIGMA, RHO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
*     ..
*     .. Common block to return operation count ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
*
*  Purpose
*  =======
*
*  This subroutine computes the square root of the I-th eigenvalue
*  of a positive symmetric rank-one modification of a 2-by-2 diagonal
*  matrix
*
*             diag( D ) * diag( D ) +  RHO *  Z * transpose(Z) .
*
*  The diagonal entries in the array D are assumed to satisfy
*
*             0 <= D(i) < D(j)  for  i < j .
*
*  We also assume RHO > 0 and that the Euclidean norm of the vector
*  Z is one.
*
*  Arguments
*  =========
*
*  I      (input) INTEGER
*         The index of the eigenvalue to be computed.  I = 1 or I = 2.
*
*  D      (input) DOUBLE PRECISION array, dimension ( 2 )
*         The original eigenvalues.  We assume 0 <= D(1) < D(2).
*
*  Z      (input) DOUBLE PRECISION array, dimension ( 2 )
*         The components of the updating vector.
*
*  DELTA  (output) DOUBLE PRECISION array, dimension ( 2 )
*         Contains (D(j) - lambda_I) in its  j-th component.
*         The vector DELTA contains the information necessary
*         to construct the eigenvectors.
*
*  RHO    (input) DOUBLE PRECISION
*         The scalar in the symmetric updating formula.
*
*  DSIGMA (output) DOUBLE PRECISION
*         The computed lambda_I, the I-th updated eigenvalue.
*
*  WORK   (workspace) DOUBLE PRECISION array, dimension ( 2 )
*         WORK contains (D(j) + sigma_I) in its  j-th component.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ren-Cang Li, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                   THREE = 3.0D0, FOUR = 4.0D0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   B, C, DEL, DELSQ, TAU, W
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, ABS, SQRT
*     ..
*     .. Executable Statements ..
*
      OPS = OPS + DBLE( 3 )
      DEL = D( 2 ) - D( 1 )
      DELSQ = DEL*( D( 2 )+D( 1 ) )
      IF( I.EQ.1 ) THEN
         OPS = OPS + DBLE( 13 )
         W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
     $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
         IF( W.GT.ZERO ) THEN
            OPS = OPS + DBLE( 8 )
            B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 1 )*Z( 1 )*DELSQ
*
*           B > ZERO, always
*
*           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
*
            OPS = OPS + DBLE( 7 )
            TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
*
*           The following TAU is DSIGMA - D( 1 )
*
            OPS = OPS + DBLE( 14 )
            TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
            DSIGMA = D( 1 ) + TAU
            DELTA( 1 ) = -TAU
            DELTA( 2 ) = DEL - TAU
            WORK( 1 ) = TWO*D( 1 ) + TAU
            WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
*           DELTA( 1 ) = -Z( 1 ) / TAU
*           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
         ELSE
            OPS = OPS + DBLE( 8 )
            B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
            IF( B.GT.ZERO ) THEN
               OPS = OPS + DBLE( 7 )
               TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
            ELSE
               OPS = OPS + DBLE( 6 )
               TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
            END IF
*
*           The following TAU is DSIGMA - D( 2 )
*
            OPS = OPS + DBLE( 14 )
            TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
            DSIGMA = D( 2 ) + TAU
            DELTA( 1 ) = -( DEL+TAU )
            DELTA( 2 ) = -TAU
            WORK( 1 ) = D( 1 ) + TAU + D( 2 )
            WORK( 2 ) = TWO*D( 2 ) + TAU
*           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*           DELTA( 2 ) = -Z( 2 ) / TAU
         END IF
         OPS = OPS + DBLE( 6 )
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      ELSE
*
*        Now I=2
*
         OPS = OPS + DBLE( 8 )
         B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
         C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
         IF( B.GT.ZERO ) THEN
            OPS = OPS + DBLE( 6 )
            TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
         ELSE
            OPS = OPS + DBLE( 7 )
            TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
         END IF
*
*        The following TAU is DSIGMA - D( 2 )
*
         OPS = OPS + DBLE( 20 )
         TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
         DSIGMA = D( 2 ) + TAU
         DELTA( 1 ) = -( DEL+TAU )
         DELTA( 2 ) = -TAU
         WORK( 1 ) = D( 1 ) + TAU + D( 2 )
         WORK( 2 ) = TWO*D( 2 ) + TAU
*        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*        DELTA( 2 ) = -Z( 2 ) / TAU
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      END IF
      RETURN
*
*     End of DLASD5
*
      END