1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
* -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --
* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
* Courant Institute, NAG Ltd., and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER I
DOUBLE PRECISION DSIGMA, RHO
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
* ..
* .. Common block to return operation count ..
COMMON / LATIME / OPS, ITCNT
* ..
* .. Scalars in Common ..
DOUBLE PRECISION ITCNT, OPS
* ..
*
* Purpose
* =======
*
* This subroutine computes the square root of the I-th eigenvalue
* of a positive symmetric rank-one modification of a 2-by-2 diagonal
* matrix
*
* diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
*
* The diagonal entries in the array D are assumed to satisfy
*
* 0 <= D(i) < D(j) for i < j .
*
* We also assume RHO > 0 and that the Euclidean norm of the vector
* Z is one.
*
* Arguments
* =========
*
* I (input) INTEGER
* The index of the eigenvalue to be computed. I = 1 or I = 2.
*
* D (input) DOUBLE PRECISION array, dimension ( 2 )
* The original eigenvalues. We assume 0 <= D(1) < D(2).
*
* Z (input) DOUBLE PRECISION array, dimension ( 2 )
* The components of the updating vector.
*
* DELTA (output) DOUBLE PRECISION array, dimension ( 2 )
* Contains (D(j) - lambda_I) in its j-th component.
* The vector DELTA contains the information necessary
* to construct the eigenvectors.
*
* RHO (input) DOUBLE PRECISION
* The scalar in the symmetric updating formula.
*
* DSIGMA (output) DOUBLE PRECISION
* The computed lambda_I, the I-th updated eigenvalue.
*
* WORK (workspace) DOUBLE PRECISION array, dimension ( 2 )
* WORK contains (D(j) + sigma_I) in its j-th component.
*
* Further Details
* ===============
*
* Based on contributions by
* Ren-Cang Li, Computer Science Division, University of California
* at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0, FOUR = 4.0D0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION B, C, DEL, DELSQ, TAU, W
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, ABS, SQRT
* ..
* .. Executable Statements ..
*
OPS = OPS + DBLE( 3 )
DEL = D( 2 ) - D( 1 )
DELSQ = DEL*( D( 2 )+D( 1 ) )
IF( I.EQ.1 ) THEN
OPS = OPS + DBLE( 13 )
W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
$ Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
IF( W.GT.ZERO ) THEN
OPS = OPS + DBLE( 8 )
B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 1 )*Z( 1 )*DELSQ
*
* B > ZERO, always
*
* The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
*
OPS = OPS + DBLE( 7 )
TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
*
* The following TAU is DSIGMA - D( 1 )
*
OPS = OPS + DBLE( 14 )
TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
DSIGMA = D( 1 ) + TAU
DELTA( 1 ) = -TAU
DELTA( 2 ) = DEL - TAU
WORK( 1 ) = TWO*D( 1 ) + TAU
WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
* DELTA( 1 ) = -Z( 1 ) / TAU
* DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
ELSE
OPS = OPS + DBLE( 8 )
B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
IF( B.GT.ZERO ) THEN
OPS = OPS + DBLE( 7 )
TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
ELSE
OPS = OPS + DBLE( 6 )
TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
END IF
*
* The following TAU is DSIGMA - D( 2 )
*
OPS = OPS + DBLE( 14 )
TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
DSIGMA = D( 2 ) + TAU
DELTA( 1 ) = -( DEL+TAU )
DELTA( 2 ) = -TAU
WORK( 1 ) = D( 1 ) + TAU + D( 2 )
WORK( 2 ) = TWO*D( 2 ) + TAU
* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
* DELTA( 2 ) = -Z( 2 ) / TAU
END IF
OPS = OPS + DBLE( 6 )
* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
* DELTA( 1 ) = DELTA( 1 ) / TEMP
* DELTA( 2 ) = DELTA( 2 ) / TEMP
ELSE
*
* Now I=2
*
OPS = OPS + DBLE( 8 )
B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
IF( B.GT.ZERO ) THEN
OPS = OPS + DBLE( 6 )
TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
ELSE
OPS = OPS + DBLE( 7 )
TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
END IF
*
* The following TAU is DSIGMA - D( 2 )
*
OPS = OPS + DBLE( 20 )
TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
DSIGMA = D( 2 ) + TAU
DELTA( 1 ) = -( DEL+TAU )
DELTA( 2 ) = -TAU
WORK( 1 ) = D( 1 ) + TAU + D( 2 )
WORK( 2 ) = TWO*D( 2 ) + TAU
* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
* DELTA( 2 ) = -Z( 2 ) / TAU
* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
* DELTA( 1 ) = DELTA( 1 ) / TEMP
* DELTA( 2 ) = DELTA( 2 ) / TEMP
END IF
RETURN
*
* End of DLASD5
*
END
|