1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
PROGRAM CTIMEE
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* Purpose
* =======
*
* CTIMEE is the main timing program for the COMPLEX matrix
* eigenvalue routines in LAPACK.
*
* There are four sets of routines that can be timed:
*
* NEP (Nonsymmetric Eigenvalue Problem):
* Includes CGEHRD, CHSEQR, CTREVC, and CHSEIN
*
* SEP (Hermitian Eigenvalue Problem):
* Includes CHETRD, CSTEQR, and SSTERF
*
* SVD (Singular Value Decomposition):
* Includes CGEBRD, CUNGBR, CBDSQR, and CGESDD
*
* GEP (Generalized nonsymmetric Eigenvalue Problem):
* Includes CGGHRD, CHGEQZ, and CTGEVC
*
* Each test path has a different input file. The first line of the
* input file should contain the characters NEP, SEP, SVD, or GEP in
* columns 1-3. The number of remaining lines depends on what is found
* on the first line.
*
*-----------------------------------------------------------------------
*
* NEP input file:
*
* line 2: NN, INTEGER
* Number of values of N.
*
* line 3: NVAL, INTEGER array, dimension (NN)
* The values for the matrix dimension N.
*
* line 4: NPARM, INTEGER
* Number of values of the parameters NB, NS, MAXB, and LDA.
*
* line 5: NBVAL, INTEGER array, dimension (NPARM)
* The values for the blocksize NB.
*
* line 6: NSVAL, INTEGER array, dimension (NPARM)
* The values for the number of shifts.
*
* line 7: MXBVAL, INTEGER array, dimension (NPARM)
* The values for MAXB, used in determining whether multishift
* will be used.
*
* line 8: LDAVAL, INTEGER array, dimension (NPARM)
* The values for the leading dimension LDA.
*
* line 9: TIMMIN, REAL
* The minimum time (in seconds) that a subroutine will be
* timed. If TIMMIN is zero, each routine should be timed only
* once.
*
* line 10: NTYPES, INTEGER
* The number of matrix types to be used in the timing run.
* If NTYPES >= MAXTYP, all the types are used.
*
* If 0 < NTYPES < MAXTYP, then line 11 specifies NTYPES integer
* values, which are the numbers of the matrix types to be used.
*
* The remaining lines specify a path name and the specific routines to
* be timed. For the nonsymmetric eigenvalue problem, the path name is
* 'CHS'. A line to request all the routines in this path has the form
* CHS T T T T T T T T T T T T
* where the first 3 characters specify the path name, and up to MAXTYP
* nonblank characters may appear in columns 4-80. If the k-th such
* character is 'T' or 't', the k-th routine will be timed. If at least
* one but fewer than 12 nonblank characters are specified, the
* remaining routines will not be timed. If columns 4-80 are blank, all
* the routines will be timed, so the input line
* CHS
* is equivalent to the line above.
*
*-----------------------------------------------------------------------
*
* SEP input file:
*
* line 2: NN, INTEGER
* Number of values of N.
*
* line 3: NVAL, INTEGER array, dimension (NN)
* The values for the matrix dimension N.
*
* line 4: NPARM, INTEGER
* Number of values of the parameters NB and LDA.
*
* line 5: NBVAL, INTEGER array, dimension (NPARM)
* The values for the blocksize NB.
*
* line 6: LDAVAL, INTEGER array, dimension (NPARM)
* The values for the leading dimension LDA.
*
* line 7: TIMMIN, REAL
* The minimum time (in seconds) that a subroutine will be
* timed. If TIMMIN is zero, each routine should be timed only
* once.
*
* line 8: NTYPES, INTEGER
* The number of matrix types to be used in the timing run.
* If NTYPES >= MAXTYP, all the types are used.
*
* If 0 < NTYPES < MAXTYP, then line 9 specifies NTYPES integer
* values, which are the numbers of the matrix types to be used.
*
* The remaining lines specify a path name and the specific routines to
* be timed as for the NEP input file. For the symmetric eigenvalue
* problem, the path name is 'CST' and up to 8 routines may be timed.
*
*-----------------------------------------------------------------------
*
* SVD input file:
*
* line 2: NN, INTEGER
* Number of values of M and N.
*
* line 3: MVAL, INTEGER array, dimension (NN)
* The values for the matrix dimension M.
*
* line 4: NVAL, INTEGER array, dimension (NN)
* The values for the matrix dimension N.
*
* line 5: NPARM, INTEGER
* Number of values of the parameters NB and LDA.
*
* line 6: NBVAL, INTEGER array, dimension (NPARM)
* The values for the blocksize NB.
*
* line 7: LDAVAL, INTEGER array, dimension (NPARM)
* The values for the leading dimension LDA.
*
* line 8: TIMMIN, REAL
* The minimum time (in seconds) that a subroutine will be
* timed. If TIMMIN is zero, each routine should be timed only
* once.
*
* line 9: NTYPES, INTEGER
* The number of matrix types to be used in the timing run.
* If NTYPES >= MAXTYP, all the types are used.
*
* If 0 < NTYPES < MAXTYP, then line 10 specifies NTYPES integer
* values, which are the numbers of the matrix types to be used.
*
* The remaining lines specify a path name and the specific routines to
* be timed as for the NEP input file. For the singular value
* decomposition the path name is 'CBD' and up to 16 routines may be
* timed.
*
*-----------------------------------------------------------------------
*
* GEP input file:
*
* line 2: NN, INTEGER
* Number of values of N.
*
* line 3: NVAL, INTEGER array, dimension (NN)
* The values for the matrix dimension N.
*
* line 4: NPARM, INTEGER
* Number of values of the parameters NB, NS, MAXB, and LDA.
*
* line 5: NBVAL, INTEGER array, dimension (NPARM)
* The values for the blocksize NB.
*
* line 6: NSVAL, INTEGER array, dimension (NPARM)
* The values for the number of shifts.
*
* line 7: NEIVAL, INTEGER array, dimension (NPARM)
* The values for NEISP, used in determining whether multishift
* will be used.
*
* line 8: NBMVAL, INTEGER array, dimension (NPARM)
* The values for MINNB, used in determining minimum blocksize.
*
* line 9: NBKVAL, INTEGER array, dimension (NPARM)
* The values for MINBLK, also used in determining minimum
* blocksize.
*
* line 10: LDAVAL, INTEGER array, dimension (NPARM)
* The values for the leading dimension LDA.
*
* line 11: TIMMIN, REAL
* The minimum time (in seconds) that a subroutine will be
* timed. If TIMMIN is zero, each routine should be timed only
* once.
*
* line 12: NTYPES, INTEGER
* The number of matrix types to be used in the timing run.
* If NTYPES >= MAXTYP, all the types are used.
*
* If 0 < NTYPES < MAXTYP, then line 13 specifies NTYPES integer
* values, which are the numbers of the matrix types to be used.
*
* The remaining lines specify a path name and the specific routines to
* be timed. For the nonsymmetric eigenvalue problem, the path name is
* 'CHG'. A line to request all the routines in this path has the form
* CHG T T T T T T T T T T T T T T T T T T
* where the first 3 characters specify the path name, and up to MAXTYP
* nonblank characters may appear in columns 4-80. If the k-th such
* character is 'T' or 't', the k-th routine will be timed. If at least
* one but fewer than 18 nonblank characters are specified, the
* remaining routines will not be timed. If columns 4-80 are blank, all
* the routines will be timed, so the input line
* CHG
* is equivalent to the line above.
*
*=======================================================================
*
* The workspace requirements in terms of square matrices for the
* different test paths are as follows:
*
* NEP: 3 N**2 + N*(3*NB+2)
* SEP: 2 N**2 + N*(2*N) + N
* SVD: 4 N**2 + MAX( 6*N, MAXIN*MAXPRM*MAXT )
* GEP: 6 N**2 + 3*N
*
* MAXN is currently set to 400,
* LG2MXN = ceiling of log-base-2 of MAXN = 9, and LDAMAX = 420.
* The real work space needed is LWORK = MAX( MAXN*(4*MAXN+2),
* 2*LDAMAX+1+3*MAXN+2*MAXN*LG2MXN+3*MAXN**2 ), and the integer
* workspace needed is LIWRK2 = 6 + 6*MAXN + 5*MAXN*LG2MXN.
* For SVD, we assume NRHS may be as big
* as N. The parameter NEED is set to 6 to allow for 4 NxN matrices
* for GEP.
*
* The EISPACK routines tested use two real arrays to represent complex
* data, whereas the LAPACK routines use complex arrays. The LAPACK
* arrays are called A, D, and WORK and the corresponding EISPACK arrays
* are called AR, DR, and WORKR. To conserve space, we have
* EQUIVALENCEd the real arrays to their complex analogs.
* !!!*** Note ***!!!
* This EQUIVALENCE is a violation of the FORTRAN-77 standard because
* the equivalenced arrays are both passed to a subroutine and both
* modified there. Most compilers will permit this, but if not, users
* are advised to comment out these EQUIVALENCE statements in the code
* below.
*
* The work arrays RWORK and RWORK1 are also equivalenced to get the
* effect of one array with length = max( MAXN, MAXIN*MAXT*MAXPRM ).
* Generally, RWORK1 will be the larger, and even if MAXN is so large as
* to make RWORK larger, most machines will not complain. If this
* becomes a problem, though, pass RWORK instead of RWORK1 to CTIM21.
*
*
* .. Parameters ..
INTEGER MAXN, LDAMAX, LG2MXN
PARAMETER ( MAXN = 400, LDAMAX = MAXN+20, LG2MXN = 9 )
INTEGER NEED
PARAMETER ( NEED = 6 )
INTEGER LIWRK2
PARAMETER ( LIWRK2 = 6+6*MAXN+5*MAXN*LG2MXN )
INTEGER LWORK
PARAMETER ( LWORK = 2*LDAMAX+1+3*MAXN+2*MAXN*LG2MXN+
$ 4*MAXN**2 )
INTEGER MAXIN, MAXPRM, MAXT, MAXSUB
PARAMETER ( MAXIN = 12, MAXPRM = 10, MAXT = 10,
$ MAXSUB = 20 )
INTEGER LRWORK
PARAMETER ( LRWORK = MAXIN*MAXT*MAXPRM+
$ 1+3*MAXN+2*MAXN*LG2MXN+3*MAXN**2 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
* ..
* .. Local Scalars ..
LOGICAL FATAL, GEP, NEP, SEP, SVD
CHARACTER*3 C3, PATH
CHARACTER*6 VNAME
CHARACTER*80 LINE
INTEGER I, INFO, MAXTYP, NN, NPARMS, NTYPES
REAL S1, S2, TIMMIN
* ..
* .. Local Arrays ..
LOGICAL DOTYPE( MAXT ), LOGWRK( MAXN )
INTEGER ISEED( 4 ), IWORK( MAXT ), IWORK2( LIWRK2 ),
$ LDAVAL( MAXPRM ), MVAL( MAXIN ),
$ MXBVAL( MAXPRM ), MXTYPE( 4 ),
$ NBKVAL( MAXPRM ), NBMVAL( MAXPRM ),
$ NBVAL( MAXPRM ), NSVAL( MAXPRM ), NVAL( MAXIN )
REAL AR( LDAMAX*MAXN, 2*NEED ), DR( MAXN, 2*NEED ),
$ E2( MAXN ), OPCNTS( MAXPRM, MAXT, MAXIN,
$ MAXSUB ), RESULT( MAXPRM, MAXT, MAXIN,
$ MAXSUB ), RWORK( 6*MAXN ), RWORK1( LRWORK ),
$ WORKR( LWORK, 2 )
COMPLEX A( LDAMAX*MAXN, NEED ), D( MAXN, NEED ),
$ WORK( LWORK )
* ..
* .. External Functions ..
LOGICAL LSAMEN
REAL SECOND
EXTERNAL LSAMEN, SECOND
* ..
* .. External Subroutines ..
EXTERNAL CTIM21, CTIM22, CTIM26, CTIM51
* ..
* .. Scalars in Common ..
REAL ITCNT, OPS
* ..
* .. Arrays in Common ..
INTEGER IPARMS( 100 )
* ..
* .. Common blocks ..
COMMON / CLAENV / IPARMS
COMMON / LATIME / OPS, ITCNT
* ..
* .. Save statement ..
SAVE / CLAENV /
* ..
* .. Equivalences ..
EQUIVALENCE ( A, AR ), ( D, DR ), ( WORK, WORKR )
EQUIVALENCE ( RWORK, RWORK1 )
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Data statements ..
DATA ISEED / 0, 0, 0, 1 /
DATA MXTYPE / 8, 4, 5, 4 /
* ..
* .. Executable Statements ..
*
S1 = SECOND( )
FATAL = .FALSE.
NEP = .FALSE.
SEP = .FALSE.
SVD = .FALSE.
GEP = .FALSE.
*
* Read the 3-character test path
*
READ( NIN, FMT = '(A3)', END = 160 )PATH
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'CHS' )
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'CST' )
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'CBD' )
GEP = LSAMEN( 3, PATH, 'GEP' ) .OR. LSAMEN( 3, PATH, 'CHG' )
*
* Report values of parameters as they are read.
*
IF( NEP ) THEN
WRITE( NOUT, FMT = 9993 )
ELSE IF( SEP ) THEN
WRITE( NOUT, FMT = 9992 )
ELSE IF( SVD ) THEN
WRITE( NOUT, FMT = 9991 )
ELSE IF( GEP ) THEN
WRITE( NOUT, FMT = 9990 )
ELSE
WRITE( NOUT, FMT = 9996 )PATH
STOP
END IF
WRITE( NOUT, FMT = 9985 )
WRITE( NOUT, FMT = 9989 )
*
* Read the number of values of M and N.
*
READ( NIN, FMT = * )NN
IF( NN.LT.1 ) THEN
WRITE( NOUT, FMT = 9995 )'NN ', NN, 1
NN = 0
FATAL = .TRUE.
ELSE IF( NN.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9994 )'NN ', NN, MAXIN
NN = 0
FATAL = .TRUE.
END IF
*
* Read the values of M
*
READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
IF( SVD ) THEN
VNAME = ' M'
ELSE
VNAME = ' N'
END IF
DO 10 I = 1, NN
IF( MVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )VNAME, MVAL( I ), 0
FATAL = .TRUE.
ELSE IF( MVAL( I ).GT.MAXN ) THEN
WRITE( NOUT, FMT = 9994 )VNAME, MVAL( I ), MAXN
FATAL = .TRUE.
END IF
10 CONTINUE
*
* Read the values of N
*
IF( SVD ) THEN
WRITE( NOUT, FMT = 9988 )'M ', ( MVAL( I ), I = 1, NN )
READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
DO 20 I = 1, NN
IF( NVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'N ', NVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NVAL( I ).GT.MAXN ) THEN
WRITE( NOUT, FMT = 9994 )'N ', NVAL( I ), MAXN
FATAL = .TRUE.
END IF
20 CONTINUE
ELSE
DO 30 I = 1, NN
NVAL( I ) = MVAL( I )
30 CONTINUE
END IF
WRITE( NOUT, FMT = 9988 )'N ', ( NVAL( I ), I = 1, NN )
*
* Read the number of parameter values.
*
READ( NIN, FMT = * )NPARMS
IF( NPARMS.LT.1 ) THEN
WRITE( NOUT, FMT = 9995 )'NPARMS', NPARMS, 1
NPARMS = 0
FATAL = .TRUE.
ELSE IF( NPARMS.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9994 )'NPARMS', NPARMS, MAXIN
NPARMS = 0
FATAL = .TRUE.
END IF
*
* Read the values of NB
*
READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
DO 40 I = 1, NPARMS
IF( NBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'NB ', NBVAL( I ), 0
FATAL = .TRUE.
END IF
40 CONTINUE
WRITE( NOUT, FMT = 9988 )'NB ', ( NBVAL( I ), I = 1, NPARMS )
*
IF( NEP .OR. GEP ) THEN
*
* Read the values of NSHIFT
*
READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
DO 50 I = 1, NPARMS
IF( NSVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'NS ', NSVAL( I ), 0
FATAL = .TRUE.
END IF
50 CONTINUE
WRITE( NOUT, FMT = 9988 )'NS ', ( NSVAL( I ), I = 1, NPARMS )
*
* Read the values of MAXB
*
READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
DO 60 I = 1, NPARMS
IF( MXBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'MAXB', MXBVAL( I ), 0
FATAL = .TRUE.
END IF
60 CONTINUE
WRITE( NOUT, FMT = 9988 )'MAXB',
$ ( MXBVAL( I ), I = 1, NPARMS )
ELSE
DO 70 I = 1, NPARMS
NSVAL( I ) = 1
MXBVAL( I ) = 1
70 CONTINUE
END IF
*
IF( GEP ) THEN
*
* Read the values of NBMIN
*
READ( NIN, FMT = * )( NBMVAL( I ), I = 1, NPARMS )
DO 80 I = 1, NPARMS
IF( NBMVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'NBMIN', NBMVAL( I ), 0
FATAL = .TRUE.
END IF
80 CONTINUE
WRITE( NOUT, FMT = 9988 )'NBMIN',
$ ( NBMVAL( I ), I = 1, NPARMS )
*
* Read the values of MINBLK
*
READ( NIN, FMT = * )( NBKVAL( I ), I = 1, NPARMS )
DO 90 I = 1, NPARMS
IF( NBKVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'MINBLK', NBKVAL( I ), 0
FATAL = .TRUE.
END IF
90 CONTINUE
WRITE( NOUT, FMT = 9988 )'MINBLK',
$ ( NBKVAL( I ), I = 1, NPARMS )
ELSE
DO 100 I = 1, NPARMS
NBMVAL( I ) = MAXN + 1
NBKVAL( I ) = MAXN + 1
100 CONTINUE
END IF
*
* Read the values of LDA
*
READ( NIN, FMT = * )( LDAVAL( I ), I = 1, NPARMS )
DO 110 I = 1, NPARMS
IF( LDAVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'LDA ', LDAVAL( I ), 0
FATAL = .TRUE.
ELSE IF( LDAVAL( I ).GT.LDAMAX ) THEN
WRITE( NOUT, FMT = 9994 )'LDA ', LDAVAL( I ), LDAMAX
FATAL = .TRUE.
END IF
110 CONTINUE
WRITE( NOUT, FMT = 9988 )'LDA ', ( LDAVAL( I ), I = 1, NPARMS )
*
* Read the minimum time a subroutine will be timed.
*
READ( NIN, FMT = * )TIMMIN
WRITE( NOUT, FMT = 9987 )TIMMIN
*
* Read the number of matrix types to use in timing.
*
READ( NIN, FMT = * )NTYPES
IF( NTYPES.LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'NTYPES', NTYPES, 0
FATAL = .TRUE.
NTYPES = 0
END IF
*
* Read the matrix types.
*
IF( NEP ) THEN
MAXTYP = MXTYPE( 1 )
ELSE IF( SEP ) THEN
MAXTYP = MXTYPE( 2 )
ELSE IF( SVD ) THEN
MAXTYP = MXTYPE( 3 )
ELSE
MAXTYP = MXTYPE( 4 )
END IF
IF( NTYPES.LT.MAXTYP ) THEN
READ( NIN, FMT = * )( IWORK( I ), I = 1, NTYPES )
DO 120 I = 1, MAXTYP
DOTYPE( I ) = .FALSE.
120 CONTINUE
DO 130 I = 1, NTYPES
IF( IWORK( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9995 )'TYPE', IWORK( I ), 0
FATAL = .TRUE.
ELSE IF( IWORK( I ).GT.MAXTYP ) THEN
WRITE( NOUT, FMT = 9994 )'TYPE', IWORK( I ), MAXTYP
FATAL = .TRUE.
ELSE
DOTYPE( IWORK( I ) ) = .TRUE.
END IF
130 CONTINUE
ELSE
NTYPES = MAXTYP
DO 140 I = 1, MAXT
DOTYPE( I ) = .TRUE.
140 CONTINUE
END IF
*
IF( FATAL ) THEN
WRITE( NOUT, FMT = 9999 )
9999 FORMAT( / ' Execution not attempted due to input errors' )
STOP
END IF
*
* Read the input lines indicating the test path and the routines
* to be timed. The first three characters indicate the test path.
*
150 CONTINUE
READ( NIN, FMT = '(A80)', END = 160 )LINE
C3 = LINE( 1: 3 )
*
* -------------------------------------
* NEP: Nonsymmetric Eigenvalue Problem
* -------------------------------------
*
IF( LSAMEN( 3, C3, 'CHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
CALL CTIM21( LINE, NN, NVAL, MAXTYP, DOTYPE, NPARMS, NBVAL,
$ NSVAL, MXBVAL, LDAVAL, TIMMIN, NOUT, ISEED,
$ A( 1, 1 ), AR( 1, 1 ), AR( 1, 2 ), A( 1, 2 ),
$ AR( 1, 3 ), AR( 1, 4 ), A( 1, 3 ), AR( 1, 5 ),
$ AR( 1, 6 ), D( 1, 1 ), DR( 1, 1 ), DR( 1, 3 ),
$ WORK, WORKR( 1, 1 ), WORKR( 1, 2 ), LWORK, RWORK1,
$ LOGWRK, IWORK2, RESULT, MAXPRM, MAXT, MAXIN,
$ OPCNTS, MAXPRM, MAXT, MAXIN, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9986 )'CTIM21', INFO
*
* ----------------------------------
* SEP: Symmetric Eigenvalue Problem
* ----------------------------------
*
ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
CALL CTIM22( LINE, NN, NVAL, MAXTYP, DOTYPE, NPARMS, NBVAL,
$ LDAVAL, TIMMIN, NOUT, ISEED, A( 1, 1 ),
$ DR( 1, 3 ), DR( 1, 4 ), E2, A( 1, 2 ), AR( 1, 3 ),
$ AR( 1, 4 ), D( 1, 1 ), DR( 1, 1 ), A( 1, 3 ),
$ AR( 1, 5 ), AR( 1, 6 ), WORK, LWORK, RWORK1,
$ LOGWRK, IWORK2, RESULT, MAXPRM, MAXT, MAXIN,
$ OPCNTS, MAXPRM, MAXT, MAXIN, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9986 )'CTIM22', INFO
*
* ----------------------------------
* SVD: Singular Value Decomposition
* ----------------------------------
*
ELSE IF( LSAMEN( 3, C3, 'CBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
CALL CTIM26( LINE, NN, NVAL, MVAL, MAXTYP, DOTYPE, NPARMS,
$ NBVAL, LDAVAL, TIMMIN, NOUT, ISEED, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DR( 1, 1 ),
$ D( 1, 1 ), DR( 1, 3 ), D( 1, 2 ), D( 1, 3 ),
$ D( 1, 4 ), WORK, LWORK, WORKR, IWORK, LOGWRK,
$ RESULT, MAXPRM, MAXT, MAXIN, OPCNTS, MAXPRM, MAXT,
$ MAXIN, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9986 )'CTIM26', INFO
*
* -------------------------------------
* GEP: Nonsymmetric Eigenvalue Problem
* -------------------------------------
*
ELSE IF( LSAMEN( 3, C3, 'CHG' ) .OR. LSAMEN( 3, C3, 'GEP' ) ) THEN
CALL CTIM51( LINE, NN, NVAL, MAXTYP, DOTYPE, NPARMS, NBVAL,
$ NSVAL, MXBVAL, NBMVAL, NBKVAL, LDAVAL, TIMMIN,
$ NOUT, ISEED, A( 1, 1 ), AR( 1, 1 ), AR( 1, 2 ),
$ A( 1, 2 ), AR( 1, 3 ), AR( 1, 4 ), A( 1, 3 ),
$ AR( 1, 5 ), AR( 1, 6 ), A( 1, 4 ), AR( 1, 7 ),
$ AR( 1, 8 ), A( 1, 5 ), AR( 1, 9 ), AR( 1, 10 ),
$ A( 1, 6 ), AR( 1, 11 ), AR( 1, 12 ), D, DR, WORK,
$ LWORK, RWORK1, LOGWRK, RESULT, MAXPRM, MAXT,
$ MAXIN, OPCNTS, MAXPRM, MAXT, MAXIN, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9986 )'CTIM51', INFO
ELSE
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9996 )C3
END IF
GO TO 150
160 CONTINUE
WRITE( NOUT, FMT = 9998 )
9998 FORMAT( / / ' End of timing run' )
S2 = SECOND( )
WRITE( NOUT, FMT = 9997 )S2 - S1
*
9997 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
9996 FORMAT( 1X, A3, ': Unrecognized path name' )
9995 FORMAT( ' *** Invalid input value: ', A6, '=', I6, '; must be >=',
$ I6 )
9994 FORMAT( ' *** Invalid input value: ', A6, '=', I6, '; must be <=',
$ I6 )
9993 FORMAT( ' Timing the Nonsymmetric Eigenvalue Problem routines',
$ / ' CGEHRD, CHSEQR, CTREVC, and CHSEIN' )
9992 FORMAT( ' Timing the Symmetric Eigenvalue Problem routines',
$ / ' CHETRD, CSTEQR, and SSTERF' )
9991 FORMAT( ' Timing the Singular Value Decomposition routines',
$ / ' CGEBRD, CBDSQR, and CUNGBR ' )
9990 FORMAT( ' Timing the Generalized Eigenvalue Problem routines',
$ / ' CGGHRD, CHGEQZ, and CTGEVC ' )
9989 FORMAT( / ' The following parameter values will be used:' )
9988 FORMAT( ' Values of ', A5, ': ', 10I6, / 19X, 10I6 )
9987 FORMAT( / ' Minimum time a subroutine will be timed = ', F8.2,
$ ' seconds', / )
9986 FORMAT( ' *** Error code from ', A6, ' = ', I4 )
9985 FORMAT( / ' LAPACK VERSION 3.0, released June 30, 1999 ' )
*
* End of CTIMEE
*
END
|