File: dlaqzh.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (188 lines) | stat: -rw-r--r-- 5,822 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
      SUBROUTINE DLAQZH( ILQ, ILZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ,
     $                   Z, LDZ, WORK, INFO )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      LOGICAL            ILQ, ILZ
      INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
     $                   WORK( N ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  This calls the LAPACK routines to perform the function of
*  QZHES.  It is similar in function to DGGHRD, except that
*  B is not assumed to be upper-triangular.
*
*  It reduces a pair of matrices (A,B) to a Hessenberg-triangular
*  pair (H,T).  More specifically, it computes orthogonal matrices
*  Q and Z, an (upper) Hessenberg matrix H, and an upper triangular
*  matrix T such that:
*
*    A = Q H Z'    and   B = Q T Z'
*
*
*  Arguments
*  =========
*
*  ILQ     (input) LOGICAL
*          = .FALSE. do not compute Q.
*          = .TRUE.  compute Q.
*
*  ILZ     (input) LOGICAL
*          = .FALSE. do not compute Z.
*          = .TRUE.  compute Z.
*
*  N       (input) INTEGER
*          The number of rows and columns in the matrices A, B, Q, and
*          Z.  N must be at least 0.
*
*  ILO     (input) INTEGER
*          Columns 1 through ILO-1 of A and B are assumed to be in
*          upper triangular form already, and will not be modified.
*          ILO must be at least 1.
*
*  IHI     (input) INTEGER
*          Rows IHI+1 through N of A and B are assumed to be in upper
*          triangular form already, and will not be touched.  IHI may
*          not be greater than N.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
*          On entry, the first of the pair of N x N general matrices to
*          be reduced.
*          On exit, the upper triangle and the first subdiagonal of A
*          are overwritten with the Hessenberg matrix H, and the rest
*          is set to zero.
*
*  LDA     (input) INTEGER
*          The leading dimension of A as declared in the calling
*          program. LDA must be at least max ( 1, N ) .
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
*          On entry, the second of the pair of N x N general matrices to
*          be reduced.
*          On exit, the transformed matrix T = Q' B Z, which is upper
*          triangular.
*
*  LDB     (input) INTEGER
*          The leading dimension of B as declared in the calling
*          program. LDB must be at least max ( 1, N ) .
*
*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
*          If ILQ = .TRUE., Q will contain the orthogonal matrix Q.
*          (See "Purpose", above.)
*          Will not be referenced if ILQ = .FALSE.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the matrix Q. LDQ must be at
*          least 1 and at least N.
*
*  Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
*          If ILZ = .TRUE., Z will contain the orthogonal matrix Z.
*          (See "Purpose", above.)
*          May be referenced even if ILZ = .FALSE.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the matrix Z. LDZ must be at
*          least 1 and at least N.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*          Workspace.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  errors that usually indicate LAPACK problems:
*                = 2: error return from DGEQRF;
*                = 3: error return from DORMQR;
*                = 4: error return from DORGQR;
*                = 5: error return from DGGHRD.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          COMPQ, COMPZ
      INTEGER            ICOLS, IINFO, IROWS
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEQRF, DGGHRD, DLACPY, DLASET, DORGQR, DORMQR
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Reduce B to triangular form, and initialize Q and/or Z
*
      IROWS = IHI + 1 - ILO
      ICOLS = N + 1 - ILO
      CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK, Z, N*LDZ,
     $             IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = 2
         GO TO 10
      END IF
*
      CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
     $             WORK, A( ILO, ILO ), LDA, Z, N*LDZ, IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = 3
         GO TO 10
      END IF
*
      IF( ILQ ) THEN
         CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
         CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
     $                Q( ILO+1, ILO ), LDQ )
         CALL DORGQR( IROWS, IROWS, IROWS, Q( ILO, ILO ), LDQ, WORK, Z,
     $                N*LDZ, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 4
            GO TO 10
         END IF
      END IF
*
*     Reduce to generalized Hessenberg form
*
      IF( ILQ ) THEN
         COMPQ = 'V'
      ELSE
         COMPQ = 'N'
      END IF
*
      IF( ILZ ) THEN
         COMPZ = 'I'
      ELSE
         COMPZ = 'N'
      END IF
*
      CALL DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z,
     $             LDZ, IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = 5
         GO TO 10
      END IF
*
*     End
*
   10 CONTINUE
*
      RETURN
*
*     End of DLAQZH
*
      END