File: dtim51.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (1901 lines) | stat: -rw-r--r-- 73,355 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
      SUBROUTINE DTIM51( LINE, NSIZES, NN, NTYPES, DOTYPE, NPARMS, NNB,
     $                   NSHFTS, NEISPS, MINNBS, MINBKS, LDAS, TIMMIN,
     $                   NOUT, ISEED, A, B, H, T, Q, Z, W, WORK, LWORK,
     $                   LLWORK, TIMES, LDT1, LDT2, LDT3, OPCNTS, LDO1,
     $                   LDO2, LDO3, INFO )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            INFO, LDO1, LDO2, LDO3, LDT1, LDT2, LDT3,
     $                   LWORK, NOUT, NPARMS, NSIZES, NTYPES
      DOUBLE PRECISION   TIMMIN
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * ), LLWORK( * )
      INTEGER            ISEED( * ), LDAS( * ), MINBKS( * ),
     $                   MINNBS( * ), NEISPS( * ), NN( * ), NNB( * ),
     $                   NSHFTS( * )
      DOUBLE PRECISION   A( * ), B( * ), H( * ),
     $                   OPCNTS( LDO1, LDO2, LDO3, * ), Q( * ), T( * ),
     $                   TIMES( LDT1, LDT2, LDT3, * ), W( * ),
     $                   WORK( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*  DTIM51 times the LAPACK routines for the real non-symmetric
*  generalized eigenvalue problem   A x = w B x.
*
*  For each N value in NN(1:NSIZES) and .TRUE. value in
*  DOTYPE(1:NTYPES), a pair of matrices will be generated and used to
*  test the selected routines.  Thus, NSIZES*(number of .TRUE. values
*  in DOTYPE) matrices will be generated.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          The input line which requested this routine.  This line may
*          contain a subroutine name, such as DGGHRD, indicating that
*          only routine DGGHRD will be timed, or it may contain a
*          generic name, such as DHG.  In this case, the rest of the
*          line is scanned for the first 18 non-blank characters,
*          corresponding to the eighteen combinations of subroutine and
*          options:
*          LAPACK:                                     Table Heading:
*           1: DGGHRD(no Q, no Z) (+DGEQRF, etc.)      'SGGHRD(N)'
*           2: DGGHRD(Q only)     (+DGEQRF, etc.)      'SGGHRD(Q)'
*           3: DGGHRD(Z only)     (+DGEQRF, etc.)      'SGGHRD(Z)'
*           4: DGGHRD(Q and Z)    (+DGEQRF, etc.)      'SGGHRD(Q,Z)'
*           5: DHGEQZ(Eigenvalues only)                'SHGEQZ(E)'
*           6: DHGEQZ(Schur form only)                 'SHGEQZ(S)'
*           7: DHGEQZ(Schur form and Q)                'SHGEQZ(Q)'
*           8: DHGEQZ(Schur form and Z)                'SHGEQZ(Z)'
*           9: DHGEQZ(Schur form, Q and Z)             'SHGEQZ(Q,Z)'
*          10: DTGEVC(SIDE='L', HOWMNY='A')            'STGEVC(L,A)'
*          11: DTGEVC(SIDE='L', HOWMNY='B')            'STGEVC(L,B)'
*          12: DTGEVC(SIDE='R', HOWMNY='A')            'STGEVC(R,A)'
*          13: DTGEVC(SIDE='R', HOWMNY='B')            'STGEVC(R,B)'
*          EISPACK:                       Compare w/:  Table Heading:
*          14: QZHES w/ matz=.false.            1      'QZHES(F)'
*          15: QZHES w/ matz=.true.             3      'QZHES(T)'
*          16: QZIT and QZVAL w/ matz=.false.   5      'QZIT(F)'
*          17: QZIT and QZVAL w/ matz=.true.    8      'QZIT(T)'
*          18: QZVEC                           13      'QZVEC'
*          If a character is 'T' or 't', the corresponding routine in
*          this path is timed.  If the entire line is blank, all the
*          routines in the path are timed.
*
*          Note that since QZHES does more than DGGHRD, the
*          "DGGHRD" timing also includes the time for the calls
*          to DGEQRF, DORMQR, and (if Q is computed) DORGQR
*          which are necessary to get the same functionality
*          as QZHES.
*
*  NSIZES  (input) INTEGER
*          The number of values of N contained in the vector NN.
*
*  NN      (input) INTEGER array, dimension (NSIZES)
*          The values of the matrix size N to be tested.  For each
*          N value in the array NN, and each .TRUE. value in DOTYPE,
*          a matrix A will be generated and used to test the routines.
*
*  NTYPES  (input) INTEGER
*          The number of types in DOTYPE.  Only the first MAXTYP
*          elements will be examined.  Exception: if NSIZES=1 and
*          NTYPES=MAXTYP+1, and DOTYPE=MAXTYP*f,t, then the input
*          value of A will be used.
*
*  DOTYPE  (input) LOGICAL
*          If DOTYPE(j) is .TRUE., then a pair of matrices (A,B) of
*          type j will be generated.  A and B have the form  U T1 V
*          and  U T2 V , resp., where U and V are orthogonal, T1 is
*          block upper triangular (with 1x1 and 2x2 diagonal blocks),
*          and T2 is upper triangular.  T2 has random O(1) entries in
*          the strict upper triangle and ( 0, 1, 0, 1, 1, ..., 1, 0 )
*          on the diagonal, while T1 has random O(1) entries in the
*          strict (block) upper triangle, its block diagonal will have
*          the singular values:
*          (j=1)   0, 0, 1, 1, ULP,..., ULP, 0.
*          (j=2)   0, 0, 1, 1, 1-d, 1-2*d, ..., 1-(N-5)*d=ULP, 0.
*
*                                  2        N-5
*          (j=3)   0, 0, 1, 1, a, a , ..., a   =ULP, 0.
*          (j=4)   0, 0, 1, r1, r2, ..., r(N-4), 0, where r1, etc.
*                  are random numbers in (ULP,1).
*
*  NPARMS  (input) INTEGER
*          The number of values in each of the arrays NNB, NSHFTS,
*          NEISPS, and LDAS.  For each matrix A generated according to
*          NN and DOTYPE, tests will be run with (NB,NSHIFT,NEISP,LDA)=
*          (NNB(1), NSHFTS(1), NEISPS(1), LDAS(1)),...,
*          (NNB(NPARMS), NSHFTS(NPARMS), NEISPS(NPARMS), LDAS(NPARMS))
*
*  NNB     (input) INTEGER array, dimension (NPARMS)
*          The values of the blocksize ("NB") to be tested.  They must
*          be at least 1.  Currently, this is only used by DGEQRF,
*          etc., in the timing of DGGHRD.
*
*  NSHFTS  (input) INTEGER array, dimension (NPARMS)
*          The values of the number of shifts ("NSHIFT") to be tested.
*          (Currently not used.)
*
*  NEISPS  (input) INTEGER array, dimension (NPARMS)
*          The values of "NEISP", the size of largest submatrix to be
*          processed by DLAEQZ (EISPACK method), to be tested.
*          (Currently not used.)
*
*  MINNBS  (input) INTEGER array, dimension (NPARMS)
*          The values of "MINNB", the minimum size of a product of
*          transformations which may be applied as a blocked
*          transformation, to be tested.  (Currently not used.)
*
*  MINBKS  (input) INTEGER array, dimension (NPARMS)
*          The values of "MINBK", the minimum number of rows/columns
*          to be updated with a blocked transformation, to be tested.
*          (Currently not used.)
*
*  LDAS    (input) INTEGER array, dimension (NPARMS)
*          The values of LDA, the leading dimension of all matrices,
*          to be tested.
*
*  TIMMIN  (input) DOUBLE PRECISION
*          The minimum time a subroutine will be timed.
*
*  NOUT    (input) INTEGER
*          If NOUT > 0 then NOUT specifies the unit number
*          on which the output will be printed.  If NOUT <= 0, no
*          output is printed.
*
*  ISEED   (input/output) INTEGER array, dimension (4)
*          The random seed used by the random number generator, used
*          by the test matrix generator.  It is used and updated on
*          each call to DTIM51
*
*  A       (workspace) DOUBLE PRECISION array, dimension
*                      (max(NN)*max(LDAS))
*          (a) During the testing of DGGHRD, "A", the original
*              left-hand-side matrix to be tested.
*          (b) Later, "S", the Schur form of the original "A" matrix.
*
*  B       (workspace) DOUBLE PRECISION array, dimension
*                      (max(NN)*max(LDAS))
*          (a) During the testing of DGGHRD, "B", the original
*              right-hand-side matrix to be tested.
*          (b) Later, "P", the Schur form of the original "B" matrix.
*
*  H       (workspace) DOUBLE PRECISION array, dimension
*                      (max(NN)*max(LDAS))
*          (a) During the testing of DGGHRD and DHGEQZ, "H", the
*              Hessenberg form of the original "A" matrix.
*          (b) During the testing of DTGEVC, "L", the matrix of left
*              eigenvectors.
*
*  T       (workspace) DOUBLE PRECISION array, dimension
*                      (max(NN)*max(LDAS))
*          (a) During the testing of DGGHRD and DHGEQZ, "T", the
*              triangular form of the original "B" matrix.
*          (b) During the testing of DTGEVC, "R", the matrix of right
*              eigenvectors.
*
*  Q       (workspace) DOUBLE PRECISION array, dimension
*                      (max(NN)*max(LDAS))
*          The orthogonal matrix on the left generated by DGGHRD.  If
*          DHGEQZ computes only Q or Z, then that matrix is stored here.
*          If both Q and Z are computed, the Q matrix goes here.
*
*  Z       (workspace) DOUBLE PRECISION array, dimension
*                      (max(NN)*max(LDAS))
*          The orthogonal matrix on the right generated by DGGHRD.
*          If DHGEQZ computes both Q and Z, the Z matrix is stored here.
*          Also used as scratch space for timing the DLACPY calls.
*
*  W       (workspace) DOUBLE PRECISION array, dimension (3*max(LDAS))
*          Treated as an LDA x 3 matrix whose 1st and 2nd columns hold
*          ALPHAR and ALPHAI, the real and imaginary parts of the
*          diagonal entries of "S" that would result from reducing "S"
*          and "P" simultaneously to triangular form), and whose 3rd
*          column holds BETA, the diagonal entries of "P" that would so
*          result.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          Number of elements in WORK.  It must be at least
*          (a)  6*max(NN)
*          (b)  NSIZES*NTYPES*NPARMS
*
*  LLWORK  (workspace) LOGICAL array, dimension (max( max(NN), NPARMS ))
*
*  TIMES   (output) DOUBLE PRECISION array, dimension
*                   (LDT1,LDT2,LDT3,NSUBS)
*          TIMES(i,j,k,l) will be set to the run time (in seconds) for
*          subroutine l, with N=NN(k), matrix type j, and LDA=LDAS(i),
*          NEISP=NEISPS(i), NBLOCK=NNB(i), NSHIFT=NSHFTS(i),
*          MINNB=MINNBS(i), and MINBLK=MINBKS(i).
*
*  LDT1    (input) INTEGER
*          The first dimension of TIMES.  LDT1 >= min( 1, NPARMS ).
*
*  LDT2    (input) INTEGER
*          The second dimension of TIMES.  LDT2 >= min( 1, NTYPES ).
*
*  LDT3    (input) INTEGER
*          The third dimension of TIMES.  LDT3 >= min( 1, NSIZES ).
*
*  OPCNTS  (output) DOUBLE PRECISION array, dimension
*                   (LDO1,LDO2,LDO3,NSUBS)
*          OPCNTS(i,j,k,l) will be set to the number of floating-point
*          operations executed by subroutine l, with N=NN(k), matrix
*          type j, and LDA=LDAS(i), NEISP=NEISPS(i), NBLOCK=NNB(i),
*          NSHIFT=NSHFTS(i), MINNB=MINNBS(i), and MINBLK=MINBKS(i).
*
*  LDO1    (input) INTEGER
*          The first dimension of OPCNTS.  LDO1 >= min( 1, NPARMS ).
*
*  LDO2    (input) INTEGER
*          The second dimension of OPCNTS.  LDO2 >= min( 1, NTYPES ).
*
*  LDO3    (input) INTEGER
*          The third dimension of OPCNTS.  LDO3 >= min( 1, NSIZES ).
*
*  INFO    (output) INTEGER
*          Error flag.  It will be set to zero if no error occurred.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXTYP, NSUBS
      PARAMETER          ( MAXTYP = 4, NSUBS = 18 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            RUNEQ, RUNES, RUNHES, RUNHRD, RUNQZ
      INTEGER            IC, IINFO, IN, IPAR, ISUB, ITEMP, ITYPE, J, J1,
     $                   J2, J3, J4, JC, JR, LASTL, LDA, LDAMIN, LDH,
     $                   LDQ, LDS, LDW, MINBLK, MINNB, MTYPES, N, N1,
     $                   NB, NBSMAX, NEISP, NMAX, NSHIFT
      DOUBLE PRECISION   S1, S2, TIME, ULP, UNTIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER*6        PNAMES( 6 )
      CHARACTER*11       SUBNAM( NSUBS )
      INTEGER            INPARM( NSUBS ), IOLDSD( 4 ), KATYPE( MAXTYP )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLARND, DOPLA, DSECND
      EXTERNAL           DLAMCH, DLARND, DOPLA, DSECND
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMIN, DHGEQZ, DLACPY, DLAQZH, DLARFG, DLASET,
     $                   DLATM4, DORM2R, DPRTBG, DTGEVC, QZHES, QZIT,
     $                   QZVAL, QZVEC, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN, SIGN
*     ..
*     .. Common blocks ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. Scalars in Common ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'DGGHRD(N)', 'DGGHRD(Q)', 'DGGHRD(Z)',
     $                   'DGGHRD(Q,Z)', 'DHGEQZ(E)', 'DHGEQZ(S)',
     $                   'DHGEQZ(Q)', 'DHGEQZ(Z)', 'DHGEQZ(Q,Z)',
     $                   'DTGEVC(L,A)', 'DTGEVC(L,B)', 'DTGEVC(R,A)',
     $                   'DTGEVC(R,B)', 'QZHES(F)', 'QZHES(T)',
     $                   'QZIT(F)', 'QZIT(T)', 'QZVEC' /
      DATA               INPARM / 4*2, 5*1, 4*1, 5*1 /
      DATA               PNAMES / '   LDA', '    NB', '    NS',
     $                   ' NEISP', ' MINNB', 'MINBLK' /
      DATA               KATYPE / 5, 8, 7, 9 /
*     ..
*     .. Executable Statements ..
*
*     Quick Return
*
      INFO = 0
      IF( NSIZES.LE.0 .OR. NTYPES.LE.0 .OR. NPARMS.LE.0 )
     $   RETURN
*
*     Extract the timing request from the input line.
*
      CALL ATIMIN( 'DHG', LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
      IF( INFO.NE.0 )
     $   RETURN
*
*     Compute Maximum Values
*
      NMAX = 0
      DO 10 J1 = 1, NSIZES
         NMAX = MAX( NMAX, NN( J1 ) )
   10 CONTINUE
*
      LDAMIN = 2*MAX( 1, NMAX )
      NBSMAX = 0
      DO 20 J1 = 1, NPARMS
         LDAMIN = MIN( LDAMIN, LDAS( J1 ) )
         NBSMAX = MAX( NBSMAX, NNB( J1 )+NSHFTS( J1 ) )
   20 CONTINUE
*
*     Check that N <= LDA for the input values.
*
      IF( NMAX.GT.LDAMIN ) THEN
         INFO = -12
         WRITE( NOUT, FMT = 9999 )LINE( 1: 6 )
 9999    FORMAT( 1X, A, ' timing run not attempted -- N > LDA', / )
         RETURN
      END IF
*
*     Check LWORK
*
      IF( LWORK.LT.MAX( ( NBSMAX+1 )*( 2*NBSMAX+NMAX+1 ), 6*NMAX,
     $    NSIZES*NTYPES*NPARMS ) ) THEN
         INFO = -24
         WRITE( NOUT, FMT = 9998 )LINE( 1: 6 )
 9998    FORMAT( 1X, A, ' timing run not attempted -- LWORK too small.',
     $         / )
         RETURN
      END IF
*
*     Check to see whether DGGHRD or DHGEQZ must be run.
*        RUNHRD -- if DGGHRD must be run.
*        RUNES  -- if DHGEQZ must be run to get Schur form.
*        RUNEQ  -- if DHGEQZ must be run to get Schur form and Q.
*
      RUNHRD = .FALSE.
      RUNES = .FALSE.
      RUNEQ = .FALSE.
*
      IF( TIMSUB( 10 ) .OR. TIMSUB( 12 ) )
     $   RUNES = .TRUE.
      IF( TIMSUB( 11 ) .OR. TIMSUB( 13 ) )
     $   RUNEQ = .TRUE.
      IF( TIMSUB( 5 ) .OR. TIMSUB( 6 ) .OR. TIMSUB( 7 ) .OR.
     $    TIMSUB( 8 ) .OR. TIMSUB( 9 ) .OR. RUNES .OR. RUNEQ )
     $    RUNHRD = .TRUE.
*
      IF( TIMSUB( 6 ) .OR. TIMSUB( 7 ) .OR. TIMSUB( 8 ) .OR.
     $    TIMSUB( 9 ) .OR. RUNEQ )RUNES = .FALSE.
      IF( TIMSUB( 7 ) .OR. TIMSUB( 8 ) .OR. TIMSUB( 9 ) )
     $   RUNEQ = .FALSE.
      IF( TIMSUB( 1 ) .OR. TIMSUB( 2 ) .OR. TIMSUB( 3 ) .OR.
     $    TIMSUB( 4 ) )RUNHRD = .FALSE.
*
*     Check to see whether QZHES or QZIT must be run.
*
*     RUNHES -- if QZHES must be run.
*     RUNQZ  -- if QZIT and QZVAL must be run (w/ MATZ=.TRUE.).
*
      RUNHES = .FALSE.
      RUNQZ = .FALSE.
*
      IF( TIMSUB( 18 ) )
     $   RUNQZ = .TRUE.
      IF( TIMSUB( 16 ) .OR. TIMSUB( 17 ) .OR. RUNQZ )
     $   RUNHES = .TRUE.
      IF( TIMSUB( 17 ) )
     $   RUNQZ = .FALSE.
      IF( TIMSUB( 14 ) .OR. TIMSUB( 15 ) )
     $   RUNHES = .FALSE.
*
*     Various Constants
*
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Zero out OPCNTS, TIMES
*
      DO 60 J4 = 1, NSUBS
         DO 50 J3 = 1, NSIZES
            DO 40 J2 = 1, NTYPES
               DO 30 J1 = 1, NPARMS
                  OPCNTS( J1, J2, J3, J4 ) = ZERO
                  TIMES( J1, J2, J3, J4 ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
   60 CONTINUE
*
*     Do for each value of N:
*
      DO 930 IN = 1, NSIZES
*
         N = NN( IN )
         N1 = MAX( 1, N )
*
*        Do for each .TRUE. value in DOTYPE:
*
         MTYPES = MIN( MAXTYP, NTYPES )
         IF( NTYPES.EQ.MAXTYP+1 .AND. NSIZES.EQ.1 )
     $      MTYPES = NTYPES
         DO 920 ITYPE = 1, MTYPES
            IF( .NOT.DOTYPE( ITYPE ) )
     $         GO TO 920
*
*           Save random number seed for error messages
*
            DO 70 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   70       CONTINUE
*
*           Time the LAPACK Routines
*
*           Generate A and B
*
            IF( ITYPE.LE.MAXTYP ) THEN
*
*              Generate A (w/o rotation)
*
               CALL DLATM4( KATYPE( ITYPE ), N, 3, 1, 2, ONE, ULP, ONE,
     $                      2, ISEED, A, N1 )
               IF( 3.LE.N )
     $            A( 3+2*N1 ) = ONE
*
*              Generate B (w/o rotation)
*
               CALL DLATM4( 8, N, 3, 1, 0, ONE, ONE, ONE, 2, ISEED, B,
     $                      N1 )
               IF( 2.LE.N )
     $            B( 2+N1 ) = ONE
*
               IF( N.GT.0 ) THEN
*
*                 Include rotations
*
*                 Generate U, V as Householder transformations times
*                 a diagonal matrix.
*
                  DO 90 JC = 1, N - 1
                     IC = ( JC-1 )*N1
                     DO 80 JR = JC, N
                        Q( JR+IC ) = DLARND( 3, ISEED )
                        Z( JR+IC ) = DLARND( 3, ISEED )
   80                CONTINUE
                     CALL DLARFG( N+1-JC, Q( JC+IC ), Q( JC+1+IC ), 1,
     $                            WORK( JC ) )
                     WORK( 2*N+JC ) = SIGN( ONE, Q( JC+IC ) )
                     Q( JC+IC ) = ONE
                     CALL DLARFG( N+1-JC, Z( JC+IC ), Z( JC+1+IC ), 1,
     $                            WORK( N+JC ) )
                     WORK( 3*N+JC ) = SIGN( ONE, Z( JC+IC ) )
                     Z( JC+IC ) = ONE
   90             CONTINUE
                  IC = ( N-1 )*N1
                  Q( N+IC ) = ONE
                  WORK( N ) = ZERO
                  WORK( 3*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
                  Z( N+IC ) = ONE
                  WORK( 2*N ) = ZERO
                  WORK( 4*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
*
*                 Apply the diagonal matrices
*
                  DO 110 JC = 1, N
                     DO 100 JR = 1, N
                        A( JR+IC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
     $                               A( JR+IC )
                        B( JR+IC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
     $                               B( JR+IC )
  100                CONTINUE
  110             CONTINUE
                  CALL DORM2R( 'L', 'N', N, N, N-1, Q, N1, WORK, A, N1,
     $                         WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 120
                  CALL DORM2R( 'R', 'T', N, N, N-1, Z, N1, WORK( N+1 ),
     $                         A, N1, WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 120
                  CALL DORM2R( 'L', 'N', N, N, N-1, Q, N1, WORK, B, N1,
     $                         WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 120
                  CALL DORM2R( 'R', 'T', N, N, N-1, Z, N1, WORK( N+1 ),
     $                         B, N1, WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 120
               END IF
  120          CONTINUE
            END IF
*
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
*
*           Time DGGHRD
*
*           Time DGEQRF+DGGHRD('N','N',...) for each pair
*           (LDAS(j),NNB(j))
*
            IF( TIMSUB( 1 ) ) THEN
               DO 160 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = NNB( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 1 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 1 ) = ZERO
                     GO TO 160
                  END IF
*
*                 If this value of (NB,LDA) has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 130 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) .AND. NB.EQ.NNB( J ) )
     $                  LASTL = J
  130             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time DGGHRD, computing neither Q nor Z
*                    (Actually, time DGEQRF + DORMQR + DGGHRD.)
*
                     CALL XLAENV( 1, NB )
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  140                CONTINUE
                     CALL DLACPY( 'Full', N, N, A, N1, H, LDA )
                     CALL DLACPY( 'Full', N, N, B, N1, T, LDA )
                     CALL DLAQZH( .FALSE., .FALSE., N, 1, N, H, LDA, T,
     $                            LDA, Q, LDA, Z, LDA, WORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
*
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 140
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 150 J = 1, IC
                        CALL DLACPY( 'Full', N, N, A, N1, Z, LDA )
                        CALL DLACPY( 'Full', N, N, B, N1, Z, LDA )
  150                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 1 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 1 ) = OPS / DBLE( IC ) +
     $                  DOPLA( 'DGEQRF', N, N, 0, 0, NB ) +
     $                  DOPLA( 'DORMQR', N, N, 0, 0, NB )
                     LDH = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 1 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 1 )
                     TIMES( IPAR, ITYPE, IN, 1 ) = TIMES( LASTL, ITYPE,
     $                  IN, 1 )
                  END IF
  160          CONTINUE
            ELSE IF( RUNHRD ) THEN
               CALL DLACPY( 'Full', N, N, A, N1, H, N1 )
               CALL DLACPY( 'Full', N, N, B, N1, T, N1 )
               CALL DLAQZH( .FALSE., .FALSE., N, 1, N, H, N1, T, N1, Q,
     $                      N1, Z, N1, WORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUT, FMT = 9997 )SUBNAM( 1 ), IINFO, N,
     $               ITYPE, 0, IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 920
               END IF
               LDH = N
            END IF
*
*           Time DGGHRD('I','N',...) for each pair (LDAS(j),NNB(j))
*
            IF( TIMSUB( 2 ) ) THEN
               DO 200 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = NNB( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 2 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 2 ) = ZERO
                     GO TO 200
                  END IF
*
*                 If this value of (NB,LDA) has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 170 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) .AND. NB.EQ.NNB( J ) )
     $                  LASTL = J
  170             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time DGGHRD, computing Q but not Z
*                    (Actually, DGEQRF + DORMQR + DORGQR + DGGHRD.)
*
                     CALL XLAENV( 1, NB )
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  180                CONTINUE
                     CALL DLACPY( 'Full', N, N, A, N1, H, LDA )
                     CALL DLACPY( 'Full', N, N, B, N1, T, LDA )
                     CALL DLAQZH( .TRUE., .FALSE., N, 1, N, H, LDA, T,
     $                            LDA, Q, LDA, Z, LDA, WORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 2 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
*
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 180
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 190 J = 1, IC
                        CALL DLACPY( 'Full', N, N, A, N1, Z, LDA )
                        CALL DLACPY( 'Full', N, N, B, N1, Z, LDA )
  190                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 2 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 2 ) = OPS / DBLE( IC ) +
     $                  DOPLA( 'DGEQRF', N, N, 0, 0, NB ) +
     $                  DOPLA( 'DORMQR', N, N, 0, 0, NB ) +
     $                  DOPLA( 'DORGQR', N, N, 0, 0, NB )
                     LDH = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 2 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 2 )
                     TIMES( IPAR, ITYPE, IN, 2 ) = TIMES( LASTL, ITYPE,
     $                  IN, 2 )
                  END IF
  200          CONTINUE
            END IF
*
*           Time DGGHRD('N','I',...) for each pair (LDAS(j),NNB(j))
*
            IF( TIMSUB( 3 ) ) THEN
               DO 240 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = NNB( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 3 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 3 ) = ZERO
                     GO TO 240
                  END IF
*
*                 If this value of (NB,LDA) has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 210 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) .AND. NB.EQ.NNB( J ) )
     $                  LASTL = J
  210             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time DGGHRD, computing Z but not Q
*                    (Actually, DGEQRF + DORMQR + DGGHRD.)
*
                     CALL XLAENV( 1, NB )
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  220                CONTINUE
                     CALL DLACPY( 'Full', N, N, A, N1, H, LDA )
                     CALL DLACPY( 'Full', N, N, B, N1, T, LDA )
                     CALL DLAQZH( .FALSE., .TRUE., N, 1, N, H, LDA, T,
     $                            LDA, Q, LDA, Z, LDA, WORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 3 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
*
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 220
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 230 J = 1, IC
                        CALL DLACPY( 'Full', N, N, A, N1, Z, LDA )
                        CALL DLACPY( 'Full', N, N, B, N1, Z, LDA )
  230                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 3 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 3 ) = OPS / DBLE( IC ) +
     $                  DOPLA( 'DGEQRF', N, N, 0, 0, NB ) +
     $                  DOPLA( 'DORMQR', N, N, 0, 0, NB )
                     LDH = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 3 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 3 )
                     TIMES( IPAR, ITYPE, IN, 3 ) = TIMES( LASTL, ITYPE,
     $                  IN, 3 )
                  END IF
  240          CONTINUE
            END IF
*
*           Time DGGHRD('I','I',...) for each pair (LDAS(j),NNB(j))
*
            IF( TIMSUB( 4 ) ) THEN
               DO 280 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  NB = NNB( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 4 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 4 ) = ZERO
                     GO TO 280
                  END IF
*
*                 If this value of (NB,LDA) has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 250 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) .AND. NB.EQ.NNB( J ) )
     $                  LASTL = J
  250             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time DGGHRD, computing Q and Z
*                    (Actually, DGEQRF + DORMQR + DORGQR + DGGHRD.)
*
                     CALL XLAENV( 1, NB )
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  260                CONTINUE
                     CALL DLACPY( 'Full', N, N, A, N1, H, LDA )
                     CALL DLACPY( 'Full', N, N, B, N1, T, LDA )
                     CALL DLAQZH( .TRUE., .TRUE., N, 1, N, H, LDA, T,
     $                            LDA, Q, LDA, Z, LDA, WORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 4 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
*
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 260
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 270 J = 1, IC
                        CALL DLACPY( 'Full', N, N, A, N1, Z, LDA )
                        CALL DLACPY( 'Full', N, N, B, N1, Z, LDA )
  270                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 4 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 4 ) = OPS / DBLE( IC ) +
     $                  DOPLA( 'DGEQRF', N, N, 0, 0, NB ) +
     $                  DOPLA( 'DORMQR', N, N, 0, 0, NB ) +
     $                  DOPLA( 'DORGQR', N, N, 0, 0, NB )
                     LDH = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 4 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 4 )
                     TIMES( IPAR, ITYPE, IN, 4 ) = TIMES( LASTL, ITYPE,
     $                  IN, 4 )
                  END IF
  280          CONTINUE
            END IF
*
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
*
*           Time DHGEQZ
*
*           Time DHGEQZ with JOB='E' for each value of LDAS(j)
*
            IF( TIMSUB( 5 ) ) THEN
               DO 320 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 5 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 5 ) = ZERO
                     GO TO 320
                  END IF
*
*                 If this value of LDA has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 290 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  290             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time DHGEQZ with JOB='E'
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  300                CONTINUE
                     CALL DLACPY( 'Full', N, N, H, LDH, A, LDA )
                     CALL DLACPY( 'Full', N, N, T, LDH, B, LDA )
                     CALL DHGEQZ( 'E', 'N', 'N', N, 1, N, A, LDA, B,
     $                            LDA, W, W( LDA+1 ), W( 2*LDA+1 ), Q,
     $                            LDA, Z, LDA, WORK, LWORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 5 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 300
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 310 J = 1, IC
                        CALL DLACPY( 'Full', N, N, H, LDH, Z, LDA )
                        CALL DLACPY( 'Full', N, N, T, LDH, Z, LDA )
  310                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 5 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 5 ) = OPS / DBLE( IC )
                     LDS = 0
                     LDQ = 0
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 5 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 5 )
                     TIMES( IPAR, ITYPE, IN, 5 ) = TIMES( LASTL, ITYPE,
     $                  IN, 5 )
                  END IF
  320          CONTINUE
            END IF
*
*           Time DHGEQZ with JOB='S', COMPQ=COMPZ='N' for each value
*           of LDAS(j)
*
            IF( TIMSUB( 6 ) ) THEN
               DO 360 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 6 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 6 ) = ZERO
                     GO TO 360
                  END IF
*
*                 If this value of LDA has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 330 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  330             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                 Time DHGEQZ with JOB='S', COMPQ=COMPZ='N'
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  340                CONTINUE
                     CALL DLACPY( 'Full', N, N, H, LDH, A, LDA )
                     CALL DLACPY( 'Full', N, N, T, LDH, B, LDA )
                     CALL DHGEQZ( 'S', 'N', 'N', N, 1, N, A, LDA, B,
     $                            LDA, W, W( LDA+1 ), W( 2*LDA+1 ), Q,
     $                            LDA, Z, LDA, WORK, LWORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 6 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 340
*
*                 Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 350 J = 1, IC
                        CALL DLACPY( 'Full', N, N, H, LDH, Z, LDA )
                        CALL DLACPY( 'Full', N, N, T, LDH, Z, LDA )
  350                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 6 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 6 ) = OPS / DBLE( IC )
                     LDS = LDA
                     LDQ = 0
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 6 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 6 )
                     TIMES( IPAR, ITYPE, IN, 6 ) = TIMES( LASTL, ITYPE,
     $                  IN, 6 )
                  END IF
  360          CONTINUE
            ELSE IF( RUNES ) THEN
               CALL DLACPY( 'Full', N, N, H, LDH, A, N1 )
               CALL DLACPY( 'Full', N, N, T, LDH, B, N1 )
               CALL DHGEQZ( 'S', 'N', 'N', N, 1, N, A, N1, B, N1, W,
     $                      W( N1+1 ), W( 2*N1+1 ), Q, N1, Z, N1, WORK,
     $                      LWORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUT, FMT = 9997 )SUBNAM( 6 ), IINFO, N,
     $               ITYPE, 0, IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 920
               END IF
               LDS = N1
               LDQ = 0
            END IF
*
*           Time DHGEQZ with JOB='S', COMPQ='I', COMPZ='N' for each
*           value of LDAS(j)
*
            IF( TIMSUB( 7 ) ) THEN
               DO 400 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 7 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 7 ) = ZERO
                     GO TO 400
                  END IF
*
*                 If this value of LDA has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 370 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  370             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                 Time DHGEQZ with JOB='S', COMPQ='I', COMPZ='N'
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  380                CONTINUE
                     CALL DLACPY( 'Full', N, N, H, LDH, A, LDA )
                     CALL DLACPY( 'Full', N, N, T, LDH, B, LDA )
                     CALL DHGEQZ( 'S', 'I', 'N', N, 1, N, A, LDA, B,
     $                            LDA, W, W( LDA+1 ), W( 2*LDA+1 ), Q,
     $                            LDA, Z, LDA, WORK, LWORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 7 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 380
*
*                 Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 390 J = 1, IC
                        CALL DLACPY( 'Full', N, N, H, LDH, Z, LDA )
                        CALL DLACPY( 'Full', N, N, T, LDH, Z, LDA )
  390                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 7 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 7 ) = OPS / DBLE( IC )
                     LDS = LDA
                     LDQ = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 7 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 7 )
                     TIMES( IPAR, ITYPE, IN, 7 ) = TIMES( LASTL, ITYPE,
     $                  IN, 7 )
                  END IF
  400          CONTINUE
            ELSE IF( RUNEQ ) THEN
               CALL DLACPY( 'Full', N, N, H, LDH, A, N1 )
               CALL DLACPY( 'Full', N, N, T, LDH, B, N1 )
               CALL DHGEQZ( 'S', 'I', 'N', N, 1, N, A, N1, B, N1, W,
     $                      W( N1+1 ), W( 2*N1+1 ), Q, N1, Z, N1, WORK,
     $                      LWORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUT, FMT = 9997 )SUBNAM( 7 ), IINFO, N,
     $               ITYPE, 0, IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 920
               END IF
               LDS = N1
               LDQ = N1
            END IF
*
*           Time DHGEQZ with JOB='S', COMPQ='N', COMPZ='I' for each
*           value of LDAS(j)
*
            IF( TIMSUB( 8 ) ) THEN
               DO 440 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 8 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 8 ) = ZERO
                     GO TO 440
                  END IF
*
*                 If this value of LDA has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 410 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  410             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
                     NB = MIN( N, NNB( IPAR ) )
                     NSHIFT = NSHFTS( IPAR )
                     NEISP = NEISPS( IPAR )
                     MINNB = MINNBS( IPAR )
                     MINBLK = MINBKS( IPAR )
*
*                 Time DHGEQZ with JOB='S', COMPQ='N', COMPZ='I'
*                 (Note that the "Z" matrix is stored in the array Q)
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  420                CONTINUE
                     CALL DLACPY( 'Full', N, N, H, LDH, A, LDA )
                     CALL DLACPY( 'Full', N, N, T, LDH, B, LDA )
                     CALL DHGEQZ( 'S', 'N', 'I', N, 1, N, A, LDA, B,
     $                            LDA, W, W( LDA+1 ), W( 2*LDA+1 ), Z,
     $                            LDA, Q, LDA, WORK, LWORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 8 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 420
*
*                 Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 430 J = 1, IC
                        CALL DLACPY( 'Full', N, N, H, LDH, Z, LDA )
                        CALL DLACPY( 'Full', N, N, T, LDH, Z, LDA )
  430                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 8 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 8 ) = OPS / DBLE( IC )
                     LDS = LDA
                     LDQ = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 8 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 8 )
                     TIMES( IPAR, ITYPE, IN, 8 ) = TIMES( LASTL, ITYPE,
     $                  IN, 8 )
                  END IF
  440          CONTINUE
            END IF
*
*           Time DHGEQZ with JOB='S', COMPQ='I', COMPZ='I' for each
*           value of LDAS(j)
*
            IF( TIMSUB( 9 ) ) THEN
               DO 480 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 9 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 9 ) = ZERO
                     GO TO 480
                  END IF
*
*                 If this value of LDA has occurred before,
*                 just use that value.
*
                  LASTL = 0
                  DO 450 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  450             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                 Time DHGEQZ with JOB='S', COMPQ='I', COMPZ='I'
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  460                CONTINUE
                     CALL DLACPY( 'Full', N, N, H, LDH, A, LDA )
                     CALL DLACPY( 'Full', N, N, T, LDH, B, LDA )
                     CALL DHGEQZ( 'S', 'I', 'I', N, 1, N, A, LDA, B,
     $                            LDA, W, W( LDA+1 ), W( 2*LDA+1 ), Q,
     $                            LDA, Z, LDA, WORK, LWORK, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 9 ), IINFO, N,
     $                     ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 460
*
*                 Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 470 J = 1, IC
                        CALL DLACPY( 'Full', N, N, H, LDH, Z, LDA )
                        CALL DLACPY( 'Full', N, N, T, LDH, Z, LDA )
  470                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 9 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 9 ) = OPS / DBLE( IC )
                     LDS = LDA
                     LDQ = LDA
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 9 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 9 )
                     TIMES( IPAR, ITYPE, IN, 9 ) = TIMES( LASTL, ITYPE,
     $                  IN, 9 )
                  END IF
  480          CONTINUE
            END IF
*
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
*
*           Time DTGEVC
*
            IF( TIMSUB( 10 ) .OR. TIMSUB( 11 ) .OR. TIMSUB( 12 ) .OR.
     $          TIMSUB( 13 ) ) THEN
               DO 610 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     DO 490 J = 10, 13
                        IF( TIMSUB( J ) ) THEN
                           TIMES( IPAR, ITYPE, IN, J ) = ZERO
                           OPCNTS( IPAR, ITYPE, IN, J ) = ZERO
                        END IF
  490                CONTINUE
                     GO TO 610
                  END IF
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 500 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  500             CONTINUE
*
*                 Time DTGEVC if this is a new value of LDA
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Copy S (which is in A) and P (which is in B)
*                    if necessary to get right LDA.
*
                     IF( LDA.GT.LDS ) THEN
                        DO 520 JC = N, 1, -1
                           DO 510 JR = N, 1, -1
                              A( JR+( JC-1 )*LDA ) = A( JR+( JC-1 )*
     $                           LDS )
                              B( JR+( JC-1 )*LDA ) = B( JR+( JC-1 )*
     $                           LDS )
  510                      CONTINUE
  520                   CONTINUE
                     ELSE IF( LDA.LT.LDS ) THEN
                        DO 540 JC = 1, N
                           DO 530 JR = 1, N
                              A( JR+( JC-1 )*LDA ) = A( JR+( JC-1 )*
     $                           LDS )
                              B( JR+( JC-1 )*LDA ) = B( JR+( JC-1 )*
     $                           LDS )
  530                      CONTINUE
  540                   CONTINUE
                     END IF
                     LDS = LDA
*
*                    Time DTGEVC for Left Eigenvectors only,
*                    without back transforming
*
                     IF( TIMSUB( 10 ) ) THEN
                        IC = 0
                        OPS = ZERO
                        S1 = DSECND( )
  550                   CONTINUE
                        CALL DTGEVC( 'L', 'A', LLWORK, N, A, LDA, B,
     $                               LDA, H, LDA, T, LDA, N, ITEMP,
     $                               WORK, IINFO )
                        IF( IINFO.NE.0 ) THEN
                           WRITE( NOUT, FMT = 9997 )SUBNAM( 10 ),
     $                        IINFO, N, ITYPE, IPAR, IOLDSD
                           INFO = ABS( IINFO )
                           GO TO 920
                        END IF
                        S2 = DSECND( )
                        TIME = S2 - S1
                        IC = IC + 1
                        IF( TIME.LT.TIMMIN )
     $                     GO TO 550
*
                        TIMES( IPAR, ITYPE, IN, 10 ) = TIME / DBLE( IC )
                        OPCNTS( IPAR, ITYPE, IN, 10 ) = OPS / DBLE( IC )
                     END IF
*
*                    Time DTGEVC for Left Eigenvectors only,
*                    with back transforming
*
                     IF( TIMSUB( 11 ) ) THEN
                        IC = 0
                        OPS = ZERO
                        S1 = DSECND( )
  560                   CONTINUE
                        CALL DLACPY( 'Full', N, N, Q, LDQ, H, LDA )
                        CALL DTGEVC( 'L', 'B', LLWORK, N, A, LDA, B,
     $                               LDA, H, LDA, T, LDA, N, ITEMP,
     $                               WORK, IINFO )
                        IF( IINFO.NE.0 ) THEN
                           WRITE( NOUT, FMT = 9997 )SUBNAM( 11 ),
     $                        IINFO, N, ITYPE, IPAR, IOLDSD
                           INFO = ABS( IINFO )
                           GO TO 920
                        END IF
                        S2 = DSECND( )
                        TIME = S2 - S1
                        IC = IC + 1
                        IF( TIME.LT.TIMMIN )
     $                     GO TO 560
*
*                       Subtract the time used in DLACPY.
*
                        S1 = DSECND( )
                        DO 570 J = 1, IC
                           CALL DLACPY( 'Full', N, N, Q, LDQ, H, LDA )
  570                   CONTINUE
                        S2 = DSECND( )
                        UNTIME = S2 - S1
*
                        TIMES( IPAR, ITYPE, IN, 11 ) = MAX( TIME-UNTIME,
     $                     ZERO ) / DBLE( IC )
                        OPCNTS( IPAR, ITYPE, IN, 11 ) = OPS / DBLE( IC )
                     END IF
*
*                    Time DTGEVC for Right Eigenvectors only,
*                    without back transforming
*
                     IF( TIMSUB( 12 ) ) THEN
                        IC = 0
                        OPS = ZERO
                        S1 = DSECND( )
  580                   CONTINUE
                        CALL DTGEVC( 'R', 'A', LLWORK, N, A, LDA, B,
     $                               LDA, H, LDA, T, LDA, N, ITEMP,
     $                               WORK, IINFO )
                        IF( IINFO.NE.0 ) THEN
                           WRITE( NOUT, FMT = 9997 )SUBNAM( 12 ),
     $                        IINFO, N, ITYPE, IPAR, IOLDSD
                           INFO = ABS( IINFO )
                           GO TO 920
                        END IF
                        S2 = DSECND( )
                        TIME = S2 - S1
                        IC = IC + 1
                        IF( TIME.LT.TIMMIN )
     $                     GO TO 580
*
                        TIMES( IPAR, ITYPE, IN, 12 ) = TIME / DBLE( IC )
                        OPCNTS( IPAR, ITYPE, IN, 12 ) = OPS / DBLE( IC )
                     END IF
*
*                    Time DTGEVC for Right Eigenvectors only,
*                    with back transforming
*
                     IF( TIMSUB( 13 ) ) THEN
                        IC = 0
                        OPS = ZERO
                        S1 = DSECND( )
  590                   CONTINUE
                        CALL DLACPY( 'Full', N, N, Q, LDQ, T, LDA )
                        CALL DTGEVC( 'R', 'B', LLWORK, N, A, LDA, B,
     $                               LDA, H, LDA, T, LDA, N, ITEMP,
     $                               WORK, IINFO )
                        IF( IINFO.NE.0 ) THEN
                           WRITE( NOUT, FMT = 9997 )SUBNAM( 13 ),
     $                        IINFO, N, ITYPE, IPAR, IOLDSD
                           INFO = ABS( IINFO )
                           GO TO 920
                        END IF
                        S2 = DSECND( )
                        TIME = S2 - S1
                        IC = IC + 1
                        IF( TIME.LT.TIMMIN )
     $                     GO TO 590
*
*                       Subtract the time used in DLACPY.
*
                        S1 = DSECND( )
                        DO 600 J = 1, IC
                           CALL DLACPY( 'Full', N, N, Q, LDQ, T, LDA )
  600                   CONTINUE
                        S2 = DSECND( )
                        UNTIME = S2 - S1
*
                        TIMES( IPAR, ITYPE, IN, 13 ) = MAX( TIME-UNTIME,
     $                     ZERO ) / DBLE( IC )
                        OPCNTS( IPAR, ITYPE, IN, 13 ) = OPS / DBLE( IC )
                     END IF
*
                  ELSE
*
*                    If this LDA has previously appeared, use the
*                    previously computed value(s).
*
                     IF( TIMSUB( 10 ) ) THEN
                        OPCNTS( IPAR, ITYPE, IN, 10 ) = OPCNTS( LASTL,
     $                     ITYPE, IN, 10 )
                        TIMES( IPAR, ITYPE, IN, 10 ) = TIMES( LASTL,
     $                     ITYPE, IN, 10 )
                     END IF
                     IF( TIMSUB( 11 ) ) THEN
                        OPCNTS( IPAR, ITYPE, IN, 11 ) = OPCNTS( LASTL,
     $                     ITYPE, IN, 11 )
                        TIMES( IPAR, ITYPE, IN, 11 ) = TIMES( LASTL,
     $                     ITYPE, IN, 11 )
                     END IF
                     IF( TIMSUB( 12 ) ) THEN
                        OPCNTS( IPAR, ITYPE, IN, 12 ) = OPCNTS( LASTL,
     $                     ITYPE, IN, 12 )
                        TIMES( IPAR, ITYPE, IN, 12 ) = TIMES( LASTL,
     $                     ITYPE, IN, 12 )
                     END IF
                     IF( TIMSUB( 13 ) ) THEN
                        OPCNTS( IPAR, ITYPE, IN, 13 ) = OPCNTS( LASTL,
     $                     ITYPE, IN, 13 )
                        TIMES( IPAR, ITYPE, IN, 13 ) = TIMES( LASTL,
     $                     ITYPE, IN, 13 )
                     END IF
                  END IF
  610          CONTINUE
            END IF
*
*           Time the EISPACK Routines
*
*           Restore random number seed
*
            DO 620 J = 1, 4
               ISEED( J ) = IOLDSD( J )
  620       CONTINUE
*
*           Re-generate A
*
            IF( ITYPE.LE.MAXTYP ) THEN
*
*              Generate A (w/o rotation)
*
               CALL DLATM4( KATYPE( ITYPE ), N, 3, 1, 2, ONE, ULP, ONE,
     $                      2, ISEED, A, N1 )
               IF( 3.LE.N )
     $            A( 3+2*N1 ) = ONE
*
*              Generate B (w/o rotation)
*
               CALL DLATM4( 8, N, 3, 1, 0, ONE, ONE, ONE, 2, ISEED, B,
     $                      N1 )
               IF( 2.LE.N )
     $            B( 2+N1 ) = ONE
*
               IF( N.GT.0 ) THEN
*
*                 Include rotations
*
*                 Generate U, V as Householder transformations times
*                 a diagonal matrix.
*
                  DO 640 JC = 1, N - 1
                     IC = ( JC-1 )*N1
                     DO 630 JR = JC, N
                        Q( JR+IC ) = DLARND( 3, ISEED )
                        Z( JR+IC ) = DLARND( 3, ISEED )
  630                CONTINUE
                     CALL DLARFG( N+1-JC, Q( JC+IC ), Q( JC+1+IC ), 1,
     $                            WORK( JC ) )
                     WORK( 2*N+JC ) = SIGN( ONE, Q( JC+IC ) )
                     Q( JC+IC ) = ONE
                     CALL DLARFG( N+1-JC, Z( JC+IC ), Z( JC+1+IC ), 1,
     $                            WORK( N+JC ) )
                     WORK( 3*N+JC ) = SIGN( ONE, Z( JC+IC ) )
                     Z( JC+IC ) = ONE
  640             CONTINUE
                  IC = ( N-1 )*N1
                  Q( N+IC ) = ONE
                  WORK( N ) = ZERO
                  WORK( 3*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
                  Z( N+IC ) = ONE
                  WORK( 2*N ) = ZERO
                  WORK( 4*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
*
*                 Apply the diagonal matrices
*
                  DO 660 JC = 1, N
                     DO 650 JR = 1, N
                        A( JR+IC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
     $                               A( JR+IC )
                        B( JR+IC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
     $                               B( JR+IC )
  650                CONTINUE
  660             CONTINUE
                  CALL DORM2R( 'L', 'N', N, N, N-1, Q, N1, WORK, A, N1,
     $                         WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 670
                  CALL DORM2R( 'R', 'T', N, N, N-1, Z, N1, WORK( N+1 ),
     $                         A, N1, WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 670
                  CALL DORM2R( 'L', 'N', N, N, N-1, Q, N1, WORK, B, N1,
     $                         WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 670
                  CALL DORM2R( 'R', 'T', N, N, N-1, Z, N1, WORK( N+1 ),
     $                         B, N1, WORK( 2*N+1 ), IINFO )
                  IF( IINFO.NE.0 )
     $               GO TO 670
               END IF
  670          CONTINUE
            END IF
*
*           Time QZHES w/ MATZ=.FALSE. for each LDAS(j)
*
            IF( TIMSUB( 14 ) ) THEN
               DO 710 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 14 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 14 ) = ZERO
                     GO TO 710
                  END IF
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 680 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  680             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time QZHES( ...,.FALSE.,..)
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  690                CONTINUE
                     CALL DLACPY( 'Full', N, N, A, N1, H, LDA )
                     CALL DLACPY( 'Full', N, N, B, N1, T, LDA )
                     CALL QZHES( LDA, N, H, T, .FALSE., Q )
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 690
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 700 J = 1, IC
                        CALL DLACPY( 'Full', N, N, A, N1, Z, LDA )
                        CALL DLACPY( 'Full', N, N, B, N1, Z, LDA )
  700                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 14 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 14 ) = OPS / DBLE( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 14 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 14 )
                     TIMES( IPAR, ITYPE, IN, 14 ) = TIMES( LASTL, ITYPE,
     $                  IN, 14 )
                  END IF
                  LDH = LDA
  710          CONTINUE
            ELSE IF( RUNHES ) THEN
               CALL DLACPY( 'Full', N, N, A, N1, H, N1 )
               CALL DLACPY( 'Full', N, N, B, N1, T, N1 )
               CALL QZHES( N1, N, H, T, .FALSE., Q )
               LDH = N1
            END IF
*
*           Time QZHES w/ MATZ=.TRUE. for each LDAS(j)
*
            IF( TIMSUB( 15 ) ) THEN
               DO 750 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 15 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 15 ) = ZERO
                     GO TO 750
                  END IF
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 720 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  720             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time QZHES( ...,.TRUE.,..)
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  730                CONTINUE
                     CALL DLACPY( 'Full', N, N, A, N1, H, LDA )
                     CALL DLACPY( 'Full', N, N, B, N1, T, LDA )
                     CALL QZHES( LDA, N, H, T, .TRUE., Q )
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 730
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 740 J = 1, IC
                        CALL DLACPY( 'Full', N, N, A, N1, Z, LDA )
                        CALL DLACPY( 'Full', N, N, B, N1, Z, LDA )
  740                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 15 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 15 ) = OPS / DBLE( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 15 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 15 )
                     TIMES( IPAR, ITYPE, IN, 15 ) = TIMES( LASTL, ITYPE,
     $                  IN, 15 )
                  END IF
                  LDH = LDA
  750          CONTINUE
            END IF
*
*           Time QZIT and QZVAL w/ MATZ=.FALSE. for each LDAS(j)
*
            IF( TIMSUB( 16 ) ) THEN
               DO 790 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 16 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 16 ) = ZERO
                     GO TO 790
                  END IF
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 760 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  760             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time QZIT and QZVAL with MATZ=.FALSE.
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  770                CONTINUE
                     CALL DLACPY( 'Full', N, N, H, LDH, A, LDA )
                     CALL DLACPY( 'Full', N, N, T, LDH, B, LDA )
                     CALL QZIT( LDA, N, A, B, ZERO, .FALSE., Q, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 16 ), IINFO,
     $                     N, ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
*
                     CALL QZVAL( LDA, N, A, B, W, W( LDA+1 ),
     $                           W( 2*LDA+1 ), .FALSE., Q )
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 770
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 780 J = 1, IC
                        CALL DLACPY( 'Full', N, N, H, LDH, Z, LDA )
                        CALL DLACPY( 'Full', N, N, T, LDH, Z, LDA )
  780                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 16 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 16 ) = OPS / DBLE( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 16 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 16 )
                     TIMES( IPAR, ITYPE, IN, 16 ) = TIMES( LASTL, ITYPE,
     $                  IN, 16 )
                  END IF
                  LDS = 0
  790          CONTINUE
            END IF
*
*           Time QZIT and QZVAL w/ MATZ=.TRUE. for each LDAS(j)
*
            IF( TIMSUB( 17 ) ) THEN
               DO 830 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 17 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 17 ) = ZERO
                     GO TO 830
                  END IF
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 800 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  800             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Time QZIT and QZVAL with MATZ=.TRUE.
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  810                CONTINUE
                     CALL DLACPY( 'Full', N, N, H, LDH, A, LDA )
                     CALL DLACPY( 'Full', N, N, T, LDH, B, LDA )
                     CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDA )
                     CALL QZIT( LDA, N, A, B, ZERO, .TRUE., Q, IINFO )
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUT, FMT = 9997 )SUBNAM( 17 ), IINFO,
     $                     N, ITYPE, IPAR, IOLDSD
                        INFO = ABS( IINFO )
                        GO TO 920
                     END IF
*
                     CALL QZVAL( LDA, N, A, B, W, W( LDA+1 ),
     $                           W( 2*LDA+1 ), .TRUE., Q )
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 810
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 820 J = 1, IC
                        CALL DLACPY( 'Full', N, N, H, LDH, Z, LDA )
                        CALL DLACPY( 'Full', N, N, T, LDH, Z, LDA )
                        CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDA )
  820                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 17 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 17 ) = OPS / DBLE( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 17 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 17 )
                     TIMES( IPAR, ITYPE, IN, 17 ) = TIMES( LASTL, ITYPE,
     $                  IN, 17 )
                  END IF
                  LDS = LDA
                  LDW = LDA
  830          CONTINUE
            ELSE IF( RUNQZ ) THEN
               CALL DLACPY( 'Full', N, N, H, LDH, A, N1 )
               CALL DLACPY( 'Full', N, N, T, LDH, B, N1 )
               CALL DLASET( 'Full', N, N, ZERO, ONE, Q, N1 )
               CALL QZIT( N1, N, A, B, ZERO, .TRUE., Q, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUT, FMT = 9997 )SUBNAM( 17 ), IINFO, N,
     $               ITYPE, IPAR, IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 920
               END IF
*
               CALL QZVAL( N1, N, A, B, W, W( N1+1 ), W( 2*N1+1 ),
     $                     .TRUE., Q )
               LDS = N1
               LDW = N1
            END IF
*
*           Time QZVEC for each LDAS(j)
*
            IF( TIMSUB( 18 ) ) THEN
               DO 910 IPAR = 1, NPARMS
                  LDA = LDAS( IPAR )
                  IF( LDA.LT.N1 ) THEN
                     TIMES( IPAR, ITYPE, IN, 18 ) = ZERO
                     OPCNTS( IPAR, ITYPE, IN, 18 ) = ZERO
                     GO TO 910
                  END IF
*
*                 If this value of LDA has come up before, just use
*                 the value previously computed.
*
                  LASTL = 0
                  DO 840 J = 1, IPAR - 1
                     IF( LDA.EQ.LDAS( J ) )
     $                  LASTL = J
  840             CONTINUE
*
                  IF( LASTL.EQ.0 ) THEN
*
*                    Copy W if necessary to get right LDA.
*
                     IF( LDA.GT.LDW ) THEN
                        DO 860 JC = 3, 1, -1
                           DO 850 JR = N, 1, -1
                              W( JR+( JC-1 )*LDA ) = W( JR+( JC-1 )*
     $                           LDW )
  850                      CONTINUE
  860                   CONTINUE
                     ELSE IF( LDA.LT.LDW ) THEN
                        DO 880 JC = 1, 3
                           DO 870 JR = 1, N
                              W( JR+( JC-1 )*LDA ) = W( JR+( JC-1 )*
     $                           LDW )
  870                      CONTINUE
  880                   CONTINUE
                     END IF
                     LDW = LDA
*
*                    Time QZVEC
*
                     IC = 0
                     OPS = ZERO
                     S1 = DSECND( )
  890                CONTINUE
                     CALL DLACPY( 'Full', N, N, A, LDS, H, LDA )
                     CALL DLACPY( 'Full', N, N, B, LDS, T, LDA )
                     CALL DLACPY( 'Full', N, N, Q, LDS, Z, LDA )
                     CALL QZVEC( LDA, N, H, T, W, W( LDA+1 ),
     $                           W( 2*LDA+1 ), Z )
                     S2 = DSECND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN )
     $                  GO TO 890
*
*                    Subtract the time used in DLACPY.
*
                     S1 = DSECND( )
                     DO 900 J = 1, IC
                        CALL DLACPY( 'Full', N, N, A, LDS, Z, LDA )
                        CALL DLACPY( 'Full', N, N, B, LDS, Z, LDA )
                        CALL DLACPY( 'Full', N, N, Q, LDS, Z, LDA )
  900                CONTINUE
                     S2 = DSECND( )
                     UNTIME = S2 - S1
*
                     TIMES( IPAR, ITYPE, IN, 18 ) = MAX( TIME-UNTIME,
     $                  ZERO ) / DBLE( IC )
                     OPCNTS( IPAR, ITYPE, IN, 18 ) = OPS / DBLE( IC )
                  ELSE
                     OPCNTS( IPAR, ITYPE, IN, 18 ) = OPCNTS( LASTL,
     $                  ITYPE, IN, 18 )
                     TIMES( IPAR, ITYPE, IN, 18 ) = TIMES( LASTL, ITYPE,
     $                  IN, 18 )
                  END IF
  910          CONTINUE
            END IF
*
  920    CONTINUE
  930 CONTINUE
*
*     Print a table of results for each timed routine.
*
      DO 940 ISUB = 1, NSUBS
         IF( TIMSUB( ISUB ) ) THEN
            CALL DPRTBG( SUBNAM( ISUB ), MTYPES, DOTYPE, NSIZES, NN,
     $                   INPARM( ISUB ), PNAMES, NPARMS, LDAS, NNB,
     $                   NSHFTS, NEISPS, MINNBS, MINBKS,
     $                   OPCNTS( 1, 1, 1, ISUB ), LDO1, LDO2,
     $                   TIMES( 1, 1, 1, ISUB ), LDT1, LDT2, WORK,
     $                   LLWORK, NOUT )
         END IF
  940 CONTINUE
*
      RETURN
*
*     End of DTIM51
*
 9997 FORMAT( ' DTIM51: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', ITYPE=', I6, ', IPAR=', I6, ', ISEED=(',
     $      3( I5, ',' ), I5, ')' )
*
      END