File: zeispack.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (4467 lines) | stat: -rw-r--r-- 141,563 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
      SUBROUTINE CDIV(AR,AI,BR,BI,CR,CI)
      DOUBLE PRECISION AR,AI,BR,BI,CR,CI
C
C     COMPLEX DIVISION, (CR,CI) = (AR,AI)/(BR,BI)
C
      DOUBLE PRECISION S,ARS,AIS,BRS,BIS
      S = DABS(BR) + DABS(BI)
      ARS = AR/S
      AIS = AI/S
      BRS = BR/S
      BIS = BI/S
      S = BRS**2 + BIS**2
      CR = (ARS*BRS + AIS*BIS)/S
      CI = (AIS*BRS - ARS*BIS)/S
      RETURN
      END
      SUBROUTINE CINVIT(NM,N,AR,AI,WR,WI,SELECT,MM,M,ZR,ZI,
     X                  IERR,RM1,RM2,RV1,RV2)
C
      INTEGER I,J,K,M,N,S,II,MM,MP,NM,UK,IP1,ITS,KM1,IERR
      DOUBLE PRECISION AR(NM,N),AI(NM,N),WR(N),WI(N),ZR(NM,MM),
     X       ZI(NM,MM),RM1(N,N),RM2(N,N),RV1(N),RV2(N)
      DOUBLE PRECISION X,Y,EPS3,NORM,NORMV,EPSLON,GROWTO,ILAMBD,PYTHAG,
     X       RLAMBD,UKROOT
      LOGICAL SELECT(N)
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO OPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON /LATIME/ OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION OPS, ITCNT, OPST
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE CX INVIT
C     BY PETERS AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP. VOL.II-LINEAR ALGEBRA, 418-439(1971).
C
C     THIS SUBROUTINE FINDS THOSE EIGENVECTORS OF A COMPLEX UPPER
C     HESSENBERG MATRIX CORRESPONDING TO SPECIFIED EIGENVALUES,
C     USING INVERSE ITERATION.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE HESSENBERG MATRIX.
C
C        WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS, RESPECTIVELY,
C          OF THE EIGENVALUES OF THE MATRIX.  THE EIGENVALUES MUST BE
C          STORED IN A MANNER IDENTICAL TO THAT OF SUBROUTINE  COMLR,
C          WHICH RECOGNIZES POSSIBLE SPLITTING OF THE MATRIX.
C
C        SELECT SPECIFIES THE EIGENVECTORS TO BE FOUND.  THE
C          EIGENVECTOR CORRESPONDING TO THE J-TH EIGENVALUE IS
C          SPECIFIED BY SETTING SELECT(J) TO .TRUE..
C
C        MM SHOULD BE SET TO AN UPPER BOUND FOR THE NUMBER OF
C          EIGENVECTORS TO BE FOUND.
C
C     ON OUTPUT
C
C        AR, AI, WI, AND SELECT ARE UNALTERED.
C
C        WR MAY HAVE BEEN ALTERED SINCE CLOSE EIGENVALUES ARE PERTURBED
C          SLIGHTLY IN SEARCHING FOR INDEPENDENT EIGENVECTORS.
C
C        M IS THE NUMBER OF EIGENVECTORS ACTUALLY FOUND.
C
C        ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, RESPECTIVELY,
C          OF THE EIGENVECTORS.  THE EIGENVECTORS ARE NORMALIZED
C          SO THAT THE COMPONENT OF LARGEST MAGNITUDE IS 1.
C          ANY VECTOR WHICH FAILS THE ACCEPTANCE TEST IS SET TO ZERO.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          -(2*N+1)   IF MORE THAN MM EIGENVECTORS HAVE BEEN SPECIFIED,
C          -K         IF THE ITERATION CORRESPONDING TO THE K-TH
C                     VALUE FAILS,
C          -(N+K)     IF BOTH ERROR SITUATIONS OCCUR.
C
C        RM1, RM2, RV1, AND RV2 ARE TEMPORARY STORAGE ARRAYS.
C
C     THE ALGOL PROCEDURE GUESSVEC APPEARS IN CINVIT IN LINE.
C
C     CALLS CDIV FOR COMPLEX DIVISION.
C     CALLS PYTHAG FOR  SQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
*
*     GET ULP FROM DLAMCH FOR NEW SMALL PERTURBATION AS IN LAPACK
      EXTERNAL DLAMCH
      DOUBLE PRECISION DLAMCH, ULP
      IF (N.LE.0) RETURN
      ULP = DLAMCH( 'EPSILON' )
C
*
*     INITIALIZE
      OPST = 0
      IERR = 0
      UK = 0
      S = 1
C
      DO 980 K = 1, N
         IF (.NOT. SELECT(K)) GO TO 980
         IF (S .GT. MM) GO TO 1000
         IF (UK .GE. K) GO TO 200
C     .......... CHECK FOR POSSIBLE SPLITTING ..........
         DO 120 UK = K, N
            IF (UK .EQ. N) GO TO 140
            IF (AR(UK+1,UK) .EQ. 0.0D0 .AND. AI(UK+1,UK) .EQ. 0.0D0)
     X         GO TO 140
  120    CONTINUE
C     .......... COMPUTE INFINITY NORM OF LEADING UK BY UK
C                (HESSENBERG) MATRIX ..........
  140    NORM = 0.0D0
         MP = 1
C
*
*        INCREMENT OPCOUNT FOR LOOP 180
         OPS = OPS + 6*UK*(UK-1)
         DO 180 I = 1, UK
            X = 0.0D0
C
            DO 160 J = MP, UK
  160       X = X + PYTHAG(AR(I,J),AI(I,J))
C
            IF (X .GT. NORM) NORM = X
            MP = I
  180    CONTINUE
C     .......... EPS3 REPLACES ZERO PIVOT IN DECOMPOSITION
C                AND CLOSE ROOTS ARE MODIFIED BY EPS3 ..........
         IF (NORM .EQ. 0.0D0) NORM = 1.0D0
*         EPS3 = EPSLON(NORM)
*
*        INCREMENT OPCOUNT FOR EPS3, UKROOT
         OPST = OPST + 3
         EPS3 = NORM*ULP
C     .......... GROWTO IS THE CRITERION FOR GROWTH ..........
         UKROOT = UK
         UKROOT = DSQRT(UKROOT)
         GROWTO = 0.1D0 / UKROOT
  200    RLAMBD = WR(K)
         ILAMBD = WI(K)
         IF (K .EQ. 1) GO TO 280
         KM1 = K - 1
         GO TO 240
C     .......... PERTURB EIGENVALUE IF IT IS CLOSE
C                TO ANY PREVIOUS EIGENVALUE ..........
  220    RLAMBD = RLAMBD + EPS3
C     .......... FOR I=K-1 STEP -1 UNTIL 1 DO -- ..........
  240    DO 260 II = 1, KM1
            I = K - II
            IF (SELECT(I) .AND. DABS(WR(I)-RLAMBD) .LT. EPS3 .AND.
     X         DABS(WI(I)-ILAMBD) .LT. EPS3) GO TO 220
  260    CONTINUE
C
*
*        INCREMENT OPCOUNT FOR LOOP 260.
         OPST = OPST + 2*(K-1)
         WR(K) = RLAMBD
C     .......... FORM UPPER HESSENBERG (AR,AI)-(RLAMBD,ILAMBD)*I
C                AND INITIAL COMPLEX VECTOR ..........
  280    MP = 1
C
*
*        INCREMENT OP COUNT FOR LOOP 320
         OPS = OPS + 2*UK
         DO 320 I = 1, UK
C
            DO 300 J = MP, UK
               RM1(I,J) = AR(I,J)
               RM2(I,J) = AI(I,J)
  300       CONTINUE
C
            RM1(I,I) = RM1(I,I) - RLAMBD
            RM2(I,I) = RM2(I,I) - ILAMBD
            MP = I
            RV1(I) = EPS3
  320    CONTINUE
C     .......... TRIANGULAR DECOMPOSITION WITH INTERCHANGES,
C                REPLACING ZERO PIVOTS BY EPS3 ..........
         IF (UK .EQ. 1) GO TO 420
C
*
*        INCREMENT OP COUNT FOR LOOP 400
         OPS = OPS + (52+4*UK)*(UK-1)
         DO 400 I = 2, UK
            MP = I - 1
            IF (PYTHAG(RM1(I,MP),RM2(I,MP)) .LE.
     X          PYTHAG(RM1(MP,MP),RM2(MP,MP))) GO TO 360
C
            DO 340 J = MP, UK
               Y = RM1(I,J)
               RM1(I,J) = RM1(MP,J)
               RM1(MP,J) = Y
               Y = RM2(I,J)
               RM2(I,J) = RM2(MP,J)
               RM2(MP,J) = Y
  340       CONTINUE
C
  360       IF (RM1(MP,MP) .EQ. 0.0D0 .AND. RM2(MP,MP) .EQ. 0.0D0)
     X         RM1(MP,MP) = EPS3
            CALL CDIV(RM1(I,MP),RM2(I,MP),RM1(MP,MP),RM2(MP,MP),X,Y)
            IF (X .EQ. 0.0D0 .AND. Y .EQ. 0.0D0) GO TO 400
C
            DO 380 J = I, UK
               RM1(I,J) = RM1(I,J) - X * RM1(MP,J) + Y * RM2(MP,J)
               RM2(I,J) = RM2(I,J) - X * RM2(MP,J) - Y * RM1(MP,J)
  380       CONTINUE
C
  400    CONTINUE
C
  420    IF (RM1(UK,UK) .EQ. 0.0D0 .AND. RM2(UK,UK) .EQ. 0.0D0)
     X      RM1(UK,UK) = EPS3
         ITS = 0
C     .......... BACK SUBSTITUTION
C                FOR I=UK STEP -1 UNTIL 1 DO -- ..........
  660    DO 720 II = 1, UK
            I = UK + 1 - II
            X = RV1(I)
            Y = 0.0D0
            IF (I .EQ. UK) GO TO 700
            IP1 = I + 1
C
            DO 680 J = IP1, UK
               X = X - RM1(I,J) * RV1(J) + RM2(I,J) * RV2(J)
               Y = Y - RM1(I,J) * RV2(J) - RM2(I,J) * RV1(J)
  680       CONTINUE
C
  700       CALL CDIV(X,Y,RM1(I,I),RM2(I,I),RV1(I),RV2(I))
  720    CONTINUE
*
*        INCREMENT OP COUNT FOR BACK SUBSTITUTION LOOP 720
         OPS = OPS + 4*UK*(UK+3)
C     .......... ACCEPTANCE TEST FOR EIGENVECTOR
C                AND NORMALIZATION ..........
         ITS = ITS + 1
         NORM = 0.0D0
         NORMV = 0.0D0
C
*
*        INCREMENT OP COUNT ACCEPTANCE TEST
         OPS = OPS + 19*UK
         DO 780 I = 1, UK
            X = PYTHAG(RV1(I),RV2(I))
            IF (NORMV .GE. X) GO TO 760
            NORMV = X
            J = I
  760       NORM = NORM + X
  780    CONTINUE
C
         IF (NORM .LT. GROWTO) GO TO 840
C     .......... ACCEPT VECTOR ..........
         X = RV1(J)
         Y = RV2(J)
C
*
*        INCREMENT OP COUNT ACCEPT VECTOR LOOP 820
         OPS = OPS + 16*UK
         DO 820 I = 1, UK
            CALL CDIV(RV1(I),RV2(I),X,Y,ZR(I,S),ZI(I,S))
  820    CONTINUE
C
         IF (UK .EQ. N) GO TO 940
         J = UK + 1
         GO TO 900
C     .......... IN-LINE PROCEDURE FOR CHOOSING
C                A NEW STARTING VECTOR ..........
  840    IF (ITS .GE. UK) GO TO 880
         X = UKROOT
         Y = EPS3 / (X + 1.0D0)
         RV1(1) = EPS3
C
         DO 860 I = 2, UK
  860    RV1(I) = Y
C
         J = UK - ITS + 1
         RV1(J) = RV1(J) - EPS3 * X
         GO TO 660
C     .......... SET ERROR -- UNACCEPTED EIGENVECTOR ..........
  880    J = 1
         IERR = -K
C     .......... SET REMAINING VECTOR COMPONENTS TO ZERO ..........
  900    DO 920 I = J, N
            ZR(I,S) = 0.0D0
            ZI(I,S) = 0.0D0
  920    CONTINUE
C
  940    S = S + 1
  980 CONTINUE
C
      GO TO 1001
C     .......... SET ERROR -- UNDERESTIMATE OF EIGENVECTOR
C                SPACE REQUIRED ..........
 1000 IF (IERR .NE. 0) IERR = IERR - N
      IF (IERR .EQ. 0) IERR = -(2 * N + 1)
 1001 M = S - 1
*
*     COMPUTE FINAL OP COUNT
      OPS = OPS + OPST
      RETURN
      END
      SUBROUTINE COMQR(NM,N,LOW,IGH,HR,HI,WR,WI,IERR)
C
      INTEGER I,J,L,N,EN,LL,NM,IGH,ITN,ITS,LOW,LP1,ENM1,IERR
      DOUBLE PRECISION HR(NM,N),HI(NM,N),WR(N),WI(N)
      DOUBLE PRECISION SI,SR,TI,TR,XI,XR,YI,YR,ZZI,ZZR,NORM,TST1,TST2,
     X       PYTHAG
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO OPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON /LATIME/ OPS, ITCNT
      COMMON /PYTHOP/ OPST
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION OPS, ITCNT, OPST
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF A UNITARY ANALOGUE OF THE
C     ALGOL PROCEDURE  COMLR, NUM. MATH. 12, 369-376(1968) BY MARTIN
C     AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 396-403(1971).
C     THE UNITARY ANALOGUE SUBSTITUTES THE QR ALGORITHM OF FRANCIS
C     (COMP. JOUR. 4, 332-345(1962)) FOR THE LR ALGORITHM.
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES OF A COMPLEX
C     UPPER HESSENBERG MATRIX BY THE QR METHOD.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
C          SUBROUTINE  CBAL.  IF  CBAL  HAS NOT BEEN USED,
C          SET LOW=1, IGH=N.
C
C        HR AND HI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE COMPLEX UPPER HESSENBERG MATRIX.
C          THEIR LOWER TRIANGLES BELOW THE SUBDIAGONAL CONTAIN
C          INFORMATION ABOUT THE UNITARY TRANSFORMATIONS USED IN
C          THE REDUCTION BY  CORTH, IF PERFORMED.
C
C     ON OUTPUT
C
C        THE UPPER HESSENBERG PORTIONS OF HR AND HI HAVE BEEN
C          DESTROYED.  THEREFORE, THEY MUST BE SAVED BEFORE
C          CALLING  COMQR  IF SUBSEQUENT CALCULATION OF
C          EIGENVECTORS IS TO BE PERFORMED.
C
C        WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE EIGENVALUES.  IF AN ERROR
C          EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT
C          FOR INDICES IERR+1,...,N.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE LIMIT OF 30*N ITERATIONS IS EXHAUSTED
C                     WHILE THE J-TH EIGENVALUE IS BEING SOUGHT.
C
C     CALLS CDIV FOR COMPLEX DIVISION.
C     CALLS CSROOT FOR COMPLEX SQUARE ROOT.
C     CALLS PYTHAG FOR  SQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
*
      EXTERNAL DLAMCH
      DOUBLE PRECISION DLAMCH, UNFL,OVFL,ULP,SMLNUM,SMALL
      INTRINSIC MAX, MIN
*
      IF (N.LE.0) RETURN
*
*     COMPUTE THE 1-NORM OF MATRIX H
*
      NORM = 0.0D0
      DO 5 J = LOW, IGH
         SR = 0.0D0
         DO 4 I = LOW, MIN(IGH,J+1)
              SR = SR + PYTHAG(HR(I,J),HI(I,J))
  4      CONTINUE
         NORM = MAX(NORM, SR)
  5   CONTINUE
*
*     GET SMALL FOR NEW CONVERGENCE CRITERION AS IN LAPACK
*
      UNFL = DLAMCH( 'SAFE MINIMUM' )
      OVFL = DLAMCH( 'OVERFLOW' )
      ULP = DLAMCH( 'EPSILON' )*DLAMCH( 'BASE' )
      SMLNUM = MAX( UNFL*( N / ULP ), N / ( ULP*OVFL ) )
      SMALL = MAX( SMLNUM, ULP*NORM )
*
*
*     INITIALIZE
      ITCNT = 0
      OPST = 0
      IERR = 0
      IF (LOW .EQ. IGH) GO TO 180
C     .......... CREATE REAL SUBDIAGONAL ELEMENTS ..........
      L = LOW + 1
C
*
*        INCREMENT OP COUNT FOR LOOP 170
         OPS = OPS + (6*(IGH-LOW+1)+32)*(IGH-L+1)
      DO 170 I = L, IGH
         LL = MIN0(I+1,IGH)
         IF (HI(I,I-1) .EQ. 0.0D0) GO TO 170
         NORM = PYTHAG(HR(I,I-1),HI(I,I-1))
         YR = HR(I,I-1) / NORM
         YI = HI(I,I-1) / NORM
         HR(I,I-1) = NORM
         HI(I,I-1) = 0.0D0
C
         DO 155 J = I, IGH
            SI = YR * HI(I,J) - YI * HR(I,J)
            HR(I,J) = YR * HR(I,J) + YI * HI(I,J)
            HI(I,J) = SI
  155    CONTINUE
C
         DO 160 J = LOW, LL
            SI = YR * HI(J,I) + YI * HR(J,I)
            HR(J,I) = YR * HR(J,I) - YI * HI(J,I)
            HI(J,I) = SI
  160    CONTINUE
C
  170 CONTINUE
C     .......... STORE ROOTS ISOLATED BY CBAL ..........
  180 DO 200 I = 1, N
         IF (I .GE. LOW .AND. I .LE. IGH) GO TO 200
         WR(I) = HR(I,I)
         WI(I) = HI(I,I)
  200 CONTINUE
C
      EN = IGH
      TR = 0.0D0
      TI = 0.0D0
      ITN = 30*N
C     .......... SEARCH FOR NEXT EIGENVALUE ..........
  220 IF (EN .LT. LOW) GO TO 1001
      ITS = 0
      ENM1 = EN - 1
C     .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C                FOR L=EN STEP -1 UNTIL LOW E0 -- ..........
  240 DO 260 LL = LOW, EN
         L = EN + LOW - LL
         IF (L .EQ. LOW) GO TO 300
         TST1 = DABS(HR(L-1,L-1)) + DABS(HI(L-1,L-1))
     X            + DABS(HR(L,L)) + DABS(HI(L,L))
*         TST2 = TST1 + ABS(HR(L,L-1))
*         IF (TST2 .EQ. TST1) GO TO 300
         TST2 = ABS(HR(L,L-1))
         IF ( TST2 .LE. MIN(ULP*TST1,SMALL) ) GO TO 300
  260 CONTINUE
C     .......... FORM SHIFT ..........
  300 CONTINUE
*
*        INCREMENT OP COUNT FOR CONVERGENCE TEST
         OPS = OPS + 4*(EN-L+1)
      IF (L .EQ. EN) GO TO 660
      IF (ITN .EQ. 0) GO TO 1000
      IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
*
*        INCREMENT OPCOUNT FOR FOMING SHIFT
         OPST = OPST + 58
      SR = HR(EN,EN)
      SI = HI(EN,EN)
      XR = HR(ENM1,EN) * HR(EN,ENM1)
      XI = HI(ENM1,EN) * HR(EN,ENM1)
      IF (XR .EQ. 0.0D0 .AND. XI .EQ. 0.0D0) GO TO 340
      YR = (HR(ENM1,ENM1) - SR) / 2.0D0
      YI = (HI(ENM1,ENM1) - SI) / 2.0D0
      CALL CSROOT(YR**2-YI**2+XR,2.0D0*YR*YI+XI,ZZR,ZZI)
      IF (YR * ZZR + YI * ZZI .GE. 0.0D0) GO TO 310
      ZZR = -ZZR
      ZZI = -ZZI
  310 CALL CDIV(XR,XI,YR+ZZR,YI+ZZI,XR,XI)
      SR = SR - XR
      SI = SI - XI
      GO TO 340
C     .......... FORM EXCEPTIONAL SHIFT ..........
  320 SR = DABS(HR(EN,ENM1)) + DABS(HR(ENM1,EN-2))
      SI = 0.0D0
C
  340 DO 360 I = LOW, EN
         HR(I,I) = HR(I,I) - SR
         HI(I,I) = HI(I,I) - SI
  360 CONTINUE
*
*        INCREMENT OPCOUNT FOR LOOP 360
         OPS = OPS + 2*EN
C
      TR = TR + SR
      TI = TI + SI
      ITS = ITS + 1
      ITN = ITN - 1
*
*       UPDATE ITERATION NUMBER
        ITCNT = 30*N - ITN
C     .......... REDUCE TO TRIANGLE (ROWS) ..........
      LP1 = L + 1
C
*
*        INCREMENT OPCOUNT FOR REDUCING TO TRIANGULAR, LOOP 500
         OPS = OPS + (EN-LP1+1)*(61+10*(EN-LP1))
      DO 500 I = LP1, EN
         SR = HR(I,I-1)
         HR(I,I-1) = 0.0D0
         NORM = PYTHAG(PYTHAG(HR(I-1,I-1),HI(I-1,I-1)),SR)
         XR = HR(I-1,I-1) / NORM
         WR(I-1) = XR
         XI = HI(I-1,I-1) / NORM
         WI(I-1) = XI
         HR(I-1,I-1) = NORM
         HI(I-1,I-1) = 0.0D0
         HI(I,I-1) = SR / NORM
C
         DO 490 J = I, EN
            YR = HR(I-1,J)
            YI = HI(I-1,J)
            ZZR = HR(I,J)
            ZZI = HI(I,J)
            HR(I-1,J) = XR * YR + XI * YI + HI(I,I-1) * ZZR
            HI(I-1,J) = XR * YI - XI * YR + HI(I,I-1) * ZZI
            HR(I,J) = XR * ZZR - XI * ZZI - HI(I,I-1) * YR
            HI(I,J) = XR * ZZI + XI * ZZR - HI(I,I-1) * YI
  490    CONTINUE
C
  500 CONTINUE
C
      SI = HI(EN,EN)
      IF (SI .EQ. 0.0D0) GO TO 540
      NORM = PYTHAG(HR(EN,EN),SI)
      SR = HR(EN,EN) / NORM
      SI = SI / NORM
      HR(EN,EN) = NORM
      HI(EN,EN) = 0.0D0
*
*        INCREMENT OPCOUNT
         OPST = OPST +20
C     .......... INVERSE OPERATION (COLUMNS) ..........
  540 DO 600 J = LP1, EN
         XR = WR(J-1)
         XI = WI(J-1)
C
         DO 580 I = L, J
            YR = HR(I,J-1)
            YI = 0.0D0
            ZZR = HR(I,J)
            ZZI = HI(I,J)
            IF (I .EQ. J) GO TO 560
            YI = HI(I,J-1)
            HI(I,J-1) = XR * YI + XI * YR + HI(J,J-1) * ZZI
  560       HR(I,J-1) = XR * YR - XI * YI + HI(J,J-1) * ZZR
            HR(I,J) = XR * ZZR + XI * ZZI - HI(J,J-1) * YR
            HI(I,J) = XR * ZZI - XI * ZZR - HI(J,J-1) * YI
  580    CONTINUE
C
  600 CONTINUE
*
*        INCREMENT OPCOUNT FOR INVERSE OPERATION LOOP 600
         OPS = OPS + 10*(EN-LP1+1)*(EN+LP1)
C
      IF (SI .EQ. 0.0D0) GO TO 240
C
*
*        INCREMENT OP COUNT FOR LOOP 630
         OPS = OPS + 6*(EN-L+1)
      DO 630 I = L, EN
         YR = HR(I,EN)
         YI = HI(I,EN)
         HR(I,EN) = SR * YR - SI * YI
         HI(I,EN) = SR * YI + SI * YR
  630 CONTINUE
C
      GO TO 240
C     .......... A ROOT FOUND ..........
  660 WR(EN) = HR(EN,EN) + TR
      WI(EN) = HI(EN,EN) + TI
      EN = ENM1
      GO TO 220
C     .......... SET ERROR -- ALL EIGENVALUES HAVE NOT
C                CONVERGED AFTER 30*N ITERATIONS ..........
 1000 IERR = EN
 1001 CONTINUE
*
*     COMPUTE FINAL OP COUNT
      OPS = OPS + OPST
      RETURN
      END
      SUBROUTINE COMQR2(NM,N,LOW,IGH,ORTR,ORTI,HR,HI,WR,WI,ZR,ZI,IERR)
C
      INTEGER I,J,K,L,M,N,EN,II,JJ,LL,NM,NN,IGH,IP1,
     X        ITN,ITS,LOW,LP1,ENM1,IEND,IERR
      DOUBLE PRECISION HR(NM,N),HI(NM,N),WR(N),WI(N),ZR(NM,N),ZI(NM,N),
     X       ORTR(IGH),ORTI(IGH)
      DOUBLE PRECISION SI,SR,TI,TR,XI,XR,YI,YR,ZZI,ZZR,NORM,TST1,TST2,
     X       PYTHAG
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO OPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON /LATIME/ OPS, ITCNT
      COMMON /PYTHOP/ OPST
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION OPS, ITCNT, OPST
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF A UNITARY ANALOGUE OF THE
C     ALGOL PROCEDURE  COMLR2, NUM. MATH. 16, 181-204(1970) BY PETERS
C     AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).
C     THE UNITARY ANALOGUE SUBSTITUTES THE QR ALGORITHM OF FRANCIS
C     (COMP. JOUR. 4, 332-345(1962)) FOR THE LR ALGORITHM.
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
C     OF A COMPLEX UPPER HESSENBERG MATRIX BY THE QR
C     METHOD.  THE EIGENVECTORS OF A COMPLEX GENERAL MATRIX
C     CAN ALSO BE FOUND IF  CORTH  HAS BEEN USED TO REDUCE
C     THIS GENERAL MATRIX TO HESSENBERG FORM.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
C          SUBROUTINE  CBAL.  IF  CBAL  HAS NOT BEEN USED,
C          SET LOW=1, IGH=N.
C
C        ORTR AND ORTI CONTAIN INFORMATION ABOUT THE UNITARY TRANS-
C          FORMATIONS USED IN THE REDUCTION BY  CORTH, IF PERFORMED.
C          ONLY ELEMENTS LOW THROUGH IGH ARE USED.  IF THE EIGENVECTORS
C          OF THE HESSENBERG MATRIX ARE DESIRED, SET ORTR(J) AND
C          ORTI(J) TO 0.0D0 FOR THESE ELEMENTS.
C
C        HR AND HI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE COMPLEX UPPER HESSENBERG MATRIX.
C          THEIR LOWER TRIANGLES BELOW THE SUBDIAGONAL CONTAIN FURTHER
C          INFORMATION ABOUT THE TRANSFORMATIONS WHICH WERE USED IN THE
C          REDUCTION BY  CORTH, IF PERFORMED.  IF THE EIGENVECTORS OF
C          THE HESSENBERG MATRIX ARE DESIRED, THESE ELEMENTS MAY BE
C          ARBITRARY.
C
C     ON OUTPUT
C
C        ORTR, ORTI, AND THE UPPER HESSENBERG PORTIONS OF HR AND HI
C          HAVE BEEN DESTROYED.
C
C        WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE EIGENVALUES.  IF AN ERROR
C          EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT
C          FOR INDICES IERR+1,...,N.
C
C        ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE EIGENVECTORS.  THE EIGENVECTORS
C          ARE UNNORMALIZED.  IF AN ERROR EXIT IS MADE, NONE OF
C          THE EIGENVECTORS HAS BEEN FOUND.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE LIMIT OF 30*N ITERATIONS IS EXHAUSTED
C                     WHILE THE J-TH EIGENVALUE IS BEING SOUGHT.
C
C     CALLS CDIV FOR COMPLEX DIVISION.
C     CALLS CSROOT FOR COMPLEX SQUARE ROOT.
C     CALLS PYTHAG FOR  SQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
*     THE ORIGINAL DO STATEMENTS
*
*         DO 840 I = 1, ENM1
*         DO 820 J = IP1, N
*         DO 880 JJ = LOW, ENM1
*
*     HAVE BEEN CHANGED TO
*
*         DO 840 I = 1, N
*         DO 820 J = I, N
*         DO 880 JJ = LOW, N
*
*     ACCORDING TO BURT GARBOW'S SUGGESTION ON NA-NET.
*     ZHAOJUN BAI, NOV.28, 1989
C     ------------------------------------------------------------------
C
*
      EXTERNAL DLAMCH
      DOUBLE PRECISION DLAMCH, UNFL,OVFL,ULP,SMLNUM,SMALL
      INTRINSIC MAX, MIN
*
      IF (N.LE.0) RETURN
*
*     COMPUTE THE 1-NORM OF MATRIX H
*
      NORM = 0.0D0
      DO 5 J = 1,N
         SR = 0.0D0
         DO 4 I = 1, MIN(N,J+1)
              SR = SR + PYTHAG(HR(I,J),HI(I,J))
  4      CONTINUE
         NORM = MAX(NORM, SR)
  5   CONTINUE
*
*     GET SMALL FOR NEW CONVERGENCE CRITERION AS IN LAPACK
*
      UNFL = DLAMCH( 'SAFE MINIMUM' )
      OVFL = DLAMCH( 'OVERFLOW' )
      ULP = DLAMCH( 'EPSILON' )*DLAMCH( 'BASE' )
      SMLNUM = MAX( UNFL*( N / ULP ), N / ( ULP*OVFL ) )
      SMALL = MAX( SMLNUM, MIN( ( NORM*SMLNUM )*NORM, ULP*NORM ) )
*
*
*     INITIALIZE
      ITCNT = 0
      OPST = 0
      IERR = 0
C     .......... INITIALIZE EIGENVECTOR MATRIX ..........
      DO 101 J = 1, N
C
         DO 100 I = 1, N
            ZR(I,J) = 0.0D0
            ZI(I,J) = 0.0D0
  100    CONTINUE
         ZR(J,J) = 1.0D0
  101 CONTINUE
C     .......... FORM THE MATRIX OF ACCUMULATED TRANSFORMATIONS
C                FROM THE INFORMATION LEFT BY CORTH ..........
      IEND = IGH - LOW - 1
      IF (IEND) 180, 150, 105
C     .......... FOR I=IGH-1 STEP -1 UNTIL LOW+1 DO -- ..........
  105 DO 140 II = 1, IEND
         I = IGH - II
         IF (ORTR(I) .EQ. 0.0D0 .AND. ORTI(I) .EQ. 0.0D0) GO TO 140
         IF (HR(I,I-1) .EQ. 0.0D0 .AND. HI(I,I-1) .EQ. 0.0D0) GO TO 140
C     .......... NORM BELOW IS NEGATIVE OF H FORMED IN CORTH ..........
         NORM = HR(I,I-1) * ORTR(I) + HI(I,I-1) * ORTI(I)
         IP1 = I + 1
C
         DO 110 K = IP1, IGH
            ORTR(K) = HR(K,I-1)
            ORTI(K) = HI(K,I-1)
  110    CONTINUE
C
*
*        INCREMENT OP COUNT FOR LOOP 130
         OPS = OPS + (16*(IGH-I+1)+2)*(IGH-I+1)
         DO 130 J = I, IGH
            SR = 0.0D0
            SI = 0.0D0
C
            DO 115 K = I, IGH
               SR = SR + ORTR(K) * ZR(K,J) + ORTI(K) * ZI(K,J)
               SI = SI + ORTR(K) * ZI(K,J) - ORTI(K) * ZR(K,J)
  115       CONTINUE
C
            SR = SR / NORM
            SI = SI / NORM
C
            DO 120 K = I, IGH
               ZR(K,J) = ZR(K,J) + SR * ORTR(K) - SI * ORTI(K)
               ZI(K,J) = ZI(K,J) + SR * ORTI(K) + SI * ORTR(K)
  120       CONTINUE
C
  130    CONTINUE
C
  140 CONTINUE
*
*        INCREMENT OP COUNT FOR COMPUTING NORM IN LOOP 140
         OPS = OPS + 3*IEND
C     .......... CREATE REAL SUBDIAGONAL ELEMENTS ..........
  150 L = LOW + 1
C
*
*        INCREMENT OP COUNT FOR LOOP 170
         OPS = OPS + (12*(IGH-LOW+1)+42)*(IGH-L+1)
      DO 170 I = L, IGH
         LL = MIN0(I+1,IGH)
         IF (HI(I,I-1) .EQ. 0.0D0) GO TO 170
         NORM = PYTHAG(HR(I,I-1),HI(I,I-1))
         YR = HR(I,I-1) / NORM
         YI = HI(I,I-1) / NORM
         HR(I,I-1) = NORM
         HI(I,I-1) = 0.0D0
C
         DO 155 J = I, N
            SI = YR * HI(I,J) - YI * HR(I,J)
            HR(I,J) = YR * HR(I,J) + YI * HI(I,J)
            HI(I,J) = SI
  155    CONTINUE
C
         DO 160 J = 1, LL
            SI = YR * HI(J,I) + YI * HR(J,I)
            HR(J,I) = YR * HR(J,I) - YI * HI(J,I)
            HI(J,I) = SI
  160    CONTINUE
C
         DO 165 J = LOW, IGH
            SI = YR * ZI(J,I) + YI * ZR(J,I)
            ZR(J,I) = YR * ZR(J,I) - YI * ZI(J,I)
            ZI(J,I) = SI
  165    CONTINUE
C
  170 CONTINUE
C     .......... STORE ROOTS ISOLATED BY CBAL ..........
  180 DO 200 I = 1, N
         IF (I .GE. LOW .AND. I .LE. IGH) GO TO 200
         WR(I) = HR(I,I)
         WI(I) = HI(I,I)
  200 CONTINUE
C
      EN = IGH
      TR = 0.0D0
      TI = 0.0D0
      ITN = 30*N
C     .......... SEARCH FOR NEXT EIGENVALUE ..........
  220 IF (EN .LT. LOW) GO TO 680
      ITS = 0
      ENM1 = EN - 1
C     .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C                FOR L=EN STEP -1 UNTIL LOW DO -- ..........
  240 DO 260 LL = LOW, EN
         L = EN + LOW - LL
         IF (L .EQ. LOW) GO TO 300
         TST1 = DABS(HR(L-1,L-1)) + DABS(HI(L-1,L-1))
     X            + DABS(HR(L,L)) + DABS(HI(L,L))
*         TST2 = TST1 + ABS(HR(L,L-1))
*         IF (TST2 .EQ. TST1) GO TO 300
         TST2 = ABS(HR(L,L-1))
         IF ( TST2 .LE. MIN(ULP*TST1,SMALL) ) GO TO 300
  260 CONTINUE
C     .......... FORM SHIFT ..........
  300 CONTINUE
*
*        INCREMENT OP COUNT FOR CONVERGENCE TEST
         OPS = OPS + 4*(EN-L+1)
      IF (L .EQ. EN) GO TO 660
      IF (ITN .EQ. 0) GO TO 1000
      IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
*
*        INCREMENT OPCOUNT FOR FOMING SHIFT
         OPST = OPST + 58
      SR = HR(EN,EN)
      SI = HI(EN,EN)
      XR = HR(ENM1,EN) * HR(EN,ENM1)
      XI = HI(ENM1,EN) * HR(EN,ENM1)
      IF (XR .EQ. 0.0D0 .AND. XI .EQ. 0.0D0) GO TO 340
      YR = (HR(ENM1,ENM1) - SR) / 2.0D0
      YI = (HI(ENM1,ENM1) - SI) / 2.0D0
      CALL CSROOT(YR**2-YI**2+XR,2.0D0*YR*YI+XI,ZZR,ZZI)
      IF (YR * ZZR + YI * ZZI .GE. 0.0D0) GO TO 310
      ZZR = -ZZR
      ZZI = -ZZI
  310 CALL CDIV(XR,XI,YR+ZZR,YI+ZZI,XR,XI)
      SR = SR - XR
      SI = SI - XI
      GO TO 340
C     .......... FORM EXCEPTIONAL SHIFT ..........
  320 SR = DABS(HR(EN,ENM1)) + DABS(HR(ENM1,EN-2))
      SI = 0.0D0
C
  340 DO 360 I = LOW, EN
         HR(I,I) = HR(I,I) - SR
         HI(I,I) = HI(I,I) - SI
  360 CONTINUE
*
*        INCREMENT OPCOUNT FOR LOOP 360
         OPS = OPS + 2*(EN-LOW+1)
C
      TR = TR + SR
      TI = TI + SI
      ITS = ITS + 1
      ITN = ITN - 1
*
*       UPDATE ITERATION NUMBER
        ITCNT = 30*N - ITN
C     .......... REDUCE TO TRIANGLE (ROWS) ..........
      LP1 = L + 1
C
*
*        INCREMENT OPCOUNT FOR REDUCING TO TRIANGULAR, LOOP 500
         OPS = OPS + (EN-LP1+1)*(61+10*(EN-LP1))
      DO 500 I = LP1, EN
         SR = HR(I,I-1)
         HR(I,I-1) = 0.0D0
         NORM = PYTHAG(PYTHAG(HR(I-1,I-1),HI(I-1,I-1)),SR)
         XR = HR(I-1,I-1) / NORM
         WR(I-1) = XR
         XI = HI(I-1,I-1) / NORM
         WI(I-1) = XI
         HR(I-1,I-1) = NORM
         HI(I-1,I-1) = 0.0D0
         HI(I,I-1) = SR / NORM
C
         DO 490 J = I, N
            YR = HR(I-1,J)
            YI = HI(I-1,J)
            ZZR = HR(I,J)
            ZZI = HI(I,J)
            HR(I-1,J) = XR * YR + XI * YI + HI(I,I-1) * ZZR
            HI(I-1,J) = XR * YI - XI * YR + HI(I,I-1) * ZZI
            HR(I,J) = XR * ZZR - XI * ZZI - HI(I,I-1) * YR
            HI(I,J) = XR * ZZI + XI * ZZR - HI(I,I-1) * YI
  490    CONTINUE
C
  500 CONTINUE
C
      SI = HI(EN,EN)
      IF (SI .EQ. 0.0D0) GO TO 540
      NORM = PYTHAG(HR(EN,EN),SI)
      SR = HR(EN,EN) / NORM
      SI = SI / NORM
      HR(EN,EN) = NORM
      HI(EN,EN) = 0.0D0
*
*        INCREMENT OP COUNT
         OPST = OPST +20
      IF (EN .EQ. N) GO TO 540
      IP1 = EN + 1
C
*
*        INCREMENT OP COUNT FOR LOOP 520
         OPST = OPST + 6*(N-IP1+1)
      DO 520 J = IP1, N
         YR = HR(EN,J)
         YI = HI(EN,J)
         HR(EN,J) = SR * YR + SI * YI
         HI(EN,J) = SR * YI - SI * YR
  520 CONTINUE
C     .......... INVERSE OPERATION (COLUMNS) ..........
  540 DO 600 J = LP1, EN
         XR = WR(J-1)
         XI = WI(J-1)
C
         DO 580 I = 1, J
            YR = HR(I,J-1)
            YI = 0.0D0
            ZZR = HR(I,J)
            ZZI = HI(I,J)
            IF (I .EQ. J) GO TO 560
            YI = HI(I,J-1)
            HI(I,J-1) = XR * YI + XI * YR + HI(J,J-1) * ZZI
  560       HR(I,J-1) = XR * YR - XI * YI + HI(J,J-1) * ZZR
            HR(I,J) = XR * ZZR + XI * ZZI - HI(J,J-1) * YR
            HI(I,J) = XR * ZZI - XI * ZZR - HI(J,J-1) * YI
  580    CONTINUE
C
         DO 590 I = LOW, IGH
            YR = ZR(I,J-1)
            YI = ZI(I,J-1)
            ZZR = ZR(I,J)
            ZZI = ZI(I,J)
            ZR(I,J-1) = XR * YR - XI * YI + HI(J,J-1) * ZZR
            ZI(I,J-1) = XR * YI + XI * YR + HI(J,J-1) * ZZI
            ZR(I,J) = XR * ZZR + XI * ZZI - HI(J,J-1) * YR
            ZI(I,J) = XR * ZZI - XI * ZZR - HI(J,J-1) * YI
  590    CONTINUE
C
  600 CONTINUE
*
*        INCREMENT OPCOUNT FOR INVERSE OPERATION LOOP 600
         OPS = OPS + ( 10*(EN+LP1) + 20*(IGH-LOW+1) )*(EN-LP1+1)
C
      IF (SI .EQ. 0.0D0) GO TO 240
C
*
*        INCREMENT OPCOUNT FOR LOOP 630 AND 640
         OPS = OPS + 6*EN + 6*(IGH-LOW+1)
      DO 630 I = 1, EN
         YR = HR(I,EN)
         YI = HI(I,EN)
         HR(I,EN) = SR * YR - SI * YI
         HI(I,EN) = SR * YI + SI * YR
  630 CONTINUE
C
      DO 640 I = LOW, IGH
         YR = ZR(I,EN)
         YI = ZI(I,EN)
         ZR(I,EN) = SR * YR - SI * YI
         ZI(I,EN) = SR * YI + SI * YR
  640 CONTINUE
C
      GO TO 240
C     .......... A ROOT FOUND ..........
  660 HR(EN,EN) = HR(EN,EN) + TR
      WR(EN) = HR(EN,EN)
      HI(EN,EN) = HI(EN,EN) + TI
      WI(EN) = HI(EN,EN)
      EN = ENM1
      GO TO 220
C     .......... ALL ROOTS FOUND.  BACKSUBSTITUTE TO FIND
C                VECTORS OF UPPER TRIANGULAR FORM ..........
  680 NORM = 0.0D0
C
*
*        INCREMENT OP COUNT FOR LOOP 720
         OPS = OPS + N*(N+1)/2
      DO 720 I = 1, N
C
         DO 720 J = I, N
            TR = DABS(HR(I,J)) + DABS(HI(I,J))
            IF (TR .GT. NORM) NORM = TR
  720 CONTINUE
C
      IF (N .EQ. 1 .OR. NORM .EQ. 0.0D0) GO TO 1001
C     .......... FOR EN=N STEP -1 UNTIL 2 DO -- ..........
      DO 800 NN = 2, N
         EN = N + 2 - NN
         XR = WR(EN)
         XI = WI(EN)
         HR(EN,EN) = 1.0D0
         HI(EN,EN) = 0.0D0
         ENM1 = EN - 1
C     .......... FOR I=EN-1 STEP -1 UNTIL 1 DO -- ..........
*
*        INCREMENT OP COUNT FOR COMPUT YR, .. IN LOOP 780
         OPS = OPS + 22*ENM1
         DO 780 II = 1, ENM1
            I = EN - II
            ZZR = 0.0D0
            ZZI = 0.0D0
            IP1 = I + 1
C
*
*        INCREMENT OP COUNT FOR LOOP 740
         OPS = OPS + 7*(EN-IP1+1)
            DO 740 J = IP1, EN
               ZZR = ZZR + HR(I,J) * HR(J,EN) - HI(I,J) * HI(J,EN)
               ZZI = ZZI + HR(I,J) * HI(J,EN) + HI(I,J) * HR(J,EN)
  740       CONTINUE
C
            YR = XR - WR(I)
            YI = XI - WI(I)
            IF (YR .NE. 0.0D0 .OR. YI .NE. 0.0D0) GO TO 765
               TST1 = NORM
               YR = TST1
  760          YR = 0.01D0 * YR
               TST2 = NORM + YR
               IF (TST2 .GT. TST1) GO TO 760
  765       CONTINUE
            CALL CDIV(ZZR,ZZI,YR,YI,HR(I,EN),HI(I,EN))
*
*        INCREMENT OP COUNT FOR CDIV
         OPST = OPST + 16
C     .......... OVERFLOW CONTROL ..........
            TR = DABS(HR(I,EN)) + DABS(HI(I,EN))
            IF (TR .EQ. 0.0D0) GO TO 780
            TST1 = TR
            TST2 = TST1 + 1.0D0/TST1
            IF (TST2 .GT. TST1) GO TO 780
*
*        INCREMENT OP COUNT FOR LOOP 770
         OPS = OPS + 2*(EN-I+1)
            DO 770 J = I, EN
               HR(J,EN) = HR(J,EN)/TR
               HI(J,EN) = HI(J,EN)/TR
  770       CONTINUE
C
  780    CONTINUE
C
  800 CONTINUE
C     .......... END BACKSUBSTITUTION ..........
      ENM1 = N - 1
C     .......... VECTORS OF ISOLATED ROOTS ..........
      DO  840 I = 1, N
         IF (I .GE. LOW .AND. I .LE. IGH) GO TO 840
         IP1 = I + 1
C
         DO 820 J = I, N
            ZR(I,J) = HR(I,J)
            ZI(I,J) = HI(I,J)
  820    CONTINUE
C
  840 CONTINUE
C     .......... MULTIPLY BY TRANSFORMATION MATRIX TO GIVE
C                VECTORS OF ORIGINAL FULL MATRIX.
C                FOR J=N STEP -1 UNTIL LOW+1 DO -- ..........
      DO 880 JJ = LOW, N
         J = N + LOW - JJ
         M = MIN0(J,IGH)
C
*
*        INCREMENT OP COUNT FOR LOOP 880
         OPS = OPS + 8*(M-LOW+1)*(IGH-LOW+1)
         DO 880 I = LOW, IGH
            ZZR = 0.0D0
            ZZI = 0.0D0
C
            DO 860 K = LOW, M
               ZZR = ZZR + ZR(I,K) * HR(K,J) - ZI(I,K) * HI(K,J)
               ZZI = ZZI + ZR(I,K) * HI(K,J) + ZI(I,K) * HR(K,J)
  860       CONTINUE
C
            ZR(I,J) = ZZR
            ZI(I,J) = ZZI
  880 CONTINUE
C
      GO TO 1001
C     .......... SET ERROR -- ALL EIGENVALUES HAVE NOT
C                CONVERGED AFTER 30*N ITERATIONS ..........
 1000 IERR = EN
 1001 CONTINUE
*
*     COMPUTE FINAL OP COUNT
      OPS = OPS + OPST
      RETURN
      END
      SUBROUTINE CORTH(NM,N,LOW,IGH,AR,AI,ORTR,ORTI)
C
      INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
      DOUBLE PRECISION AR(NM,N),AI(NM,N),ORTR(IGH),ORTI(IGH)
      DOUBLE PRECISION F,G,H,FI,FR,SCALE,PYTHAG
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO OPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON /LATIME/ OPS, ITCNT
      COMMON /PYTHOP/ OPST
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION OPS, ITCNT, OPST
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF
C     THE ALGOL PROCEDURE ORTHES, NUM. MATH. 12, 349-368(1968)
C     BY MARTIN AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
C
C     GIVEN A COMPLEX GENERAL MATRIX, THIS SUBROUTINE
C     REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS
C     LOW THROUGH IGH TO UPPER HESSENBERG FORM BY
C     UNITARY SIMILARITY TRANSFORMATIONS.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
C          SUBROUTINE  CBAL.  IF  CBAL  HAS NOT BEEN USED,
C          SET LOW=1, IGH=N.
C
C        AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE COMPLEX INPUT MATRIX.
C
C     ON OUTPUT
C
C        AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE HESSENBERG MATRIX.  INFORMATION
C          ABOUT THE UNITARY TRANSFORMATIONS USED IN THE REDUCTION
C          IS STORED IN THE REMAINING TRIANGLES UNDER THE
C          HESSENBERG MATRIX.
C
C        ORTR AND ORTI CONTAIN FURTHER INFORMATION ABOUT THE
C          TRANSFORMATIONS.  ONLY ELEMENTS LOW THROUGH IGH ARE USED.
C
C     CALLS PYTHAG FOR  SQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      IF (N.LE.0) RETURN
***
*     INITIALIZE
      OPST = 0
***
      LA = IGH - 1
      KP1 = LOW + 1
      IF (LA .LT. KP1) GO TO 200
C
      DO 180 M = KP1, LA
         H = 0.0D0
         ORTR(M) = 0.0D0
         ORTI(M) = 0.0D0
         SCALE = 0.0D0
C     .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
         DO 90 I = M, IGH
   90    SCALE = SCALE + DABS(AR(I,M-1)) + DABS(AI(I,M-1))
***
*        INCREMENT OPCOUNT FOR LOOP 90
         OPS = OPS + 2*(IGH-M+1)
***
C
         IF (SCALE .EQ. 0.0D0) GO TO 180
         MP = M + IGH
C     .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
         DO 100 II = M, IGH
            I = MP - II
            ORTR(I) = AR(I,M-1) / SCALE
            ORTI(I) = AI(I,M-1) / SCALE
            H = H + ORTR(I) * ORTR(I) + ORTI(I) * ORTI(I)
  100    CONTINUE
***
*        INCREMENT OP COUNT FOR LOOP 100 AND SQRT
         OPS = OPS + 6*(IGH-M+1) + 1
***
C
         G = DSQRT(H)
         F = PYTHAG(ORTR(M),ORTI(M))
         IF (F .EQ. 0.0D0) GO TO 103
         H = H + F * G
         G = G / F
         ORTR(M) = (1.0D0 + G) * ORTR(M)
         ORTI(M) = (1.0D0 + G) * ORTI(M)
         OPST = OPST + 7
         GO TO 105
C
  103    ORTR(M) = G
         AR(M,M-1) = SCALE
C     .......... FORM (I-(U*UT)/H) * A ..........
  105    DO 130 J = M, N
            FR = 0.0D0
            FI = 0.0D0
C     .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
            DO 110 II = M, IGH
               I = MP - II
               FR = FR + ORTR(I) * AR(I,J) + ORTI(I) * AI(I,J)
               FI = FI + ORTR(I) * AI(I,J) - ORTI(I) * AR(I,J)
  110       CONTINUE
C
            FR = FR / H
            FI = FI / H
C
            DO 120 I = M, IGH
               AR(I,J) = AR(I,J) - FR * ORTR(I) + FI * ORTI(I)
               AI(I,J) = AI(I,J) - FR * ORTI(I) - FI * ORTR(I)
  120       CONTINUE
C
  130    CONTINUE
C     .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
         DO 160 I = 1, IGH
            FR = 0.0D0
            FI = 0.0D0
C     .......... FOR J=IGH STEP -1 UNTIL M DO -- ..........
            DO 140 JJ = M, IGH
               J = MP - JJ
               FR = FR + ORTR(J) * AR(I,J) - ORTI(J) * AI(I,J)
               FI = FI + ORTR(J) * AI(I,J) + ORTI(J) * AR(I,J)
  140       CONTINUE
C
            FR = FR / H
            FI = FI / H
C
            DO 150 J = M, IGH
               AR(I,J) = AR(I,J) - FR * ORTR(J) - FI * ORTI(J)
               AI(I,J) = AI(I,J) + FR * ORTI(J) - FI * ORTR(J)
  150       CONTINUE
C
  160    CONTINUE
***
*        INCREMENT OP COUNT FOR LOOPS 130 AND 160
         OPS = OPS + (IGH+N-M+1)*((IGH-M+1)*16 + 2)
         OPST = OPST + 4
***
C
         ORTR(M) = SCALE * ORTR(M)
         ORTI(M) = SCALE * ORTI(M)
         AR(M,M-1) = -G * AR(M,M-1)
         AI(M,M-1) = -G * AI(M,M-1)
  180 CONTINUE
      OPS = OPS + OPST
C
  200 RETURN
      END
      SUBROUTINE CSROOT(XR,XI,YR,YI)
      DOUBLE PRECISION XR,XI,YR,YI
C
C     (YR,YI) = COMPLEX SQRT(XR,XI)
C     BRANCH CHOSEN SO THAT YR .GE. 0.0 AND SIGN(YI) .EQ. SIGN(XI)
C
      DOUBLE PRECISION S,TR,TI,PYTHAG
      TR = XR
      TI = XI
      S = DSQRT(0.5D0*(PYTHAG(TR,TI) + DABS(TR)))
      IF (TR .GE. 0.0D0) YR = S
      IF (TI .LT. 0.0D0) S = -S
      IF (TR .LE. 0.0D0) YI = S
      IF (TR .LT. 0.0D0) YR = 0.5D0*(TI/YI)
      IF (TR .GT. 0.0D0) YI = 0.5D0*(TI/YR)
      RETURN
      END
      SUBROUTINE HTRIBK(NM,N,AR,AI,TAU,M,ZR,ZI)
C
      INTEGER I,J,K,L,M,N,NM
      DOUBLE PRECISION AR(NM,N),AI(NM,N),TAU(2,N),ZR(NM,M),ZI(NM,M)
      DOUBLE PRECISION H,S,SI
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT.
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED.
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF
C     THE ALGOL PROCEDURE TRBAK1, NUM. MATH. 11, 181-195(1968)
C     BY MARTIN, REINSCH, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     THIS SUBROUTINE FORMS THE EIGENVECTORS OF A COMPLEX HERMITIAN
C     MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING
C     REAL SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY  HTRIDI.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY TRANS-
C          FORMATIONS USED IN THE REDUCTION BY  HTRIDI  IN THEIR
C          FULL LOWER TRIANGLES EXCEPT FOR THE DIAGONAL OF AR.
C
C        TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS.
C
C        M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED.
C
C        ZR CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED
C          IN ITS FIRST M COLUMNS.
C
C     ON OUTPUT
C
C        ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE TRANSFORMED EIGENVECTORS
C          IN THEIR FIRST M COLUMNS.
C
C     NOTE THAT THE LAST COMPONENT OF EACH RETURNED VECTOR
C     IS REAL AND THAT VECTOR EUCLIDEAN NORMS ARE PRESERVED.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      IF (M .EQ. 0) GO TO 200
*
      OPS = OPS + MAX( 0.0D0, 8*M*DBLE(N)**2 - 2*M*DBLE(N) - 4*M )
*
C     .......... TRANSFORM THE EIGENVECTORS OF THE REAL SYMMETRIC
C                TRIDIAGONAL MATRIX TO THOSE OF THE HERMITIAN
C                TRIDIAGONAL MATRIX. ..........
      DO 50 K = 1, N
C
         DO 50 J = 1, M
            ZI(K,J) = -ZR(K,J) * TAU(2,K)
            ZR(K,J) = ZR(K,J) * TAU(1,K)
   50 CONTINUE
C
      IF (N .EQ. 1) GO TO 200
C     .......... RECOVER AND APPLY THE HOUSEHOLDER MATRICES ..........
      DO 140 I = 2, N
         L = I - 1
         H = AI(I,I)
         IF (H .EQ. 0.0D0) GO TO 140
C
         DO 130 J = 1, M
            S = 0.0D0
            SI = 0.0D0
C
            DO 110 K = 1, L
               S = S + AR(I,K) * ZR(K,J) - AI(I,K) * ZI(K,J)
               SI = SI + AR(I,K) * ZI(K,J) + AI(I,K) * ZR(K,J)
  110       CONTINUE
C     .......... DOUBLE DIVISIONS AVOID POSSIBLE UNDERFLOW ..........
            S = (S / H) / H
            SI = (SI / H) / H
C
            DO 120 K = 1, L
               ZR(K,J) = ZR(K,J) - S * AR(I,K) - SI * AI(I,K)
               ZI(K,J) = ZI(K,J) - SI * AR(I,K) + S * AI(I,K)
  120       CONTINUE
C
  130    CONTINUE
C
  140 CONTINUE
C
  200 RETURN
      END
      SUBROUTINE HTRIDI(NM,N,AR,AI,D,E,E2,TAU)
C
      INTEGER I,J,K,L,N,II,NM,JP1
      DOUBLE PRECISION AR(NM,N),AI(NM,N),D(N),E(N),E2(N),TAU(2,N)
      DOUBLE PRECISION F,G,H,FI,GI,HH,SI,SCALE,PYTHAG
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT.
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED.
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF
C     THE ALGOL PROCEDURE TRED1, NUM. MATH. 11, 181-195(1968)
C     BY MARTIN, REINSCH, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     THIS SUBROUTINE REDUCES A COMPLEX HERMITIAN MATRIX
C     TO A REAL SYMMETRIC TRIDIAGONAL MATRIX USING
C     UNITARY SIMILARITY TRANSFORMATIONS.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS,
C          RESPECTIVELY, OF THE COMPLEX HERMITIAN INPUT MATRIX.
C          ONLY THE LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.
C
C     ON OUTPUT
C
C        AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY TRANS-
C          FORMATIONS USED IN THE REDUCTION IN THEIR FULL LOWER
C          TRIANGLES.  THEIR STRICT UPPER TRIANGLES AND THE
C          DIAGONAL OF AR ARE UNALTERED.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE THE TRIDIAGONAL MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C          MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO.
C
C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C          E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
C
C        TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS.
C
C     CALLS PYTHAG FOR  SQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
*
      OPS = OPS + MAX( 0.0D0, (16.0D0/3.0D0)*DBLE(N)**3 + 3*DBLE(N)**2
     $                      + (56.0D0/3.0D0)*N - 61 )
*
      TAU(1,N) = 1.0D0
      TAU(2,N) = 0.0D0
C
      DO 100 I = 1, N
  100 D(I) = AR(I,I)
C     .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
      DO 300 II = 1, N
         I = N + 1 - II
         L = I - 1
         H = 0.0D0
         SCALE = 0.0D0
         IF (L .LT. 1) GO TO 130
C     .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
         DO 120 K = 1, L
  120    SCALE = SCALE + DABS(AR(I,K)) + DABS(AI(I,K))
C
         IF (SCALE .NE. 0.0D0) GO TO 140
         TAU(1,L) = 1.0D0
         TAU(2,L) = 0.0D0
  130    E(I) = 0.0D0
         E2(I) = 0.0D0
         GO TO 290
C
  140    DO 150 K = 1, L
            AR(I,K) = AR(I,K) / SCALE
            AI(I,K) = AI(I,K) / SCALE
            H = H + AR(I,K) * AR(I,K) + AI(I,K) * AI(I,K)
  150    CONTINUE
C
         E2(I) = SCALE * SCALE * H
         G = DSQRT(H)
         E(I) = SCALE * G
         F = PYTHAG(AR(I,L),AI(I,L))
C     .......... FORM NEXT DIAGONAL ELEMENT OF MATRIX T ..........
         IF (F .EQ. 0.0D0) GO TO 160
         TAU(1,L) = (AI(I,L) * TAU(2,I) - AR(I,L) * TAU(1,I)) / F
         SI = (AR(I,L) * TAU(2,I) + AI(I,L) * TAU(1,I)) / F
         H = H + F * G
         G = 1.0D0 + G / F
         AR(I,L) = G * AR(I,L)
         AI(I,L) = G * AI(I,L)
         IF (L .EQ. 1) GO TO 270
         GO TO 170
  160    TAU(1,L) = -TAU(1,I)
         SI = TAU(2,I)
         AR(I,L) = G
  170    F = 0.0D0
C
         DO 240 J = 1, L
            G = 0.0D0
            GI = 0.0D0
C     .......... FORM ELEMENT OF A*U ..........
            DO 180 K = 1, J
               G = G + AR(J,K) * AR(I,K) + AI(J,K) * AI(I,K)
               GI = GI - AR(J,K) * AI(I,K) + AI(J,K) * AR(I,K)
  180       CONTINUE
C
            JP1 = J + 1
            IF (L .LT. JP1) GO TO 220
C
            DO 200 K = JP1, L
               G = G + AR(K,J) * AR(I,K) - AI(K,J) * AI(I,K)
               GI = GI - AR(K,J) * AI(I,K) - AI(K,J) * AR(I,K)
  200       CONTINUE
C     .......... FORM ELEMENT OF P ..........
  220       E(J) = G / H
            TAU(2,J) = GI / H
            F = F + E(J) * AR(I,J) - TAU(2,J) * AI(I,J)
  240    CONTINUE
C
         HH = F / (H + H)
C     .......... FORM REDUCED A ..........
         DO 260 J = 1, L
            F = AR(I,J)
            G = E(J) - HH * F
            E(J) = G
            FI = -AI(I,J)
            GI = TAU(2,J) - HH * FI
            TAU(2,J) = -GI
C
            DO 260 K = 1, J
               AR(J,K) = AR(J,K) - F * E(K) - G * AR(I,K)
     X                           + FI * TAU(2,K) + GI * AI(I,K)
               AI(J,K) = AI(J,K) - F * TAU(2,K) - G * AI(I,K)
     X                           - FI * E(K) - GI * AR(I,K)
  260    CONTINUE
C
  270    DO 280 K = 1, L
            AR(I,K) = SCALE * AR(I,K)
            AI(I,K) = SCALE * AI(I,K)
  280    CONTINUE
C
         TAU(2,L) = -SI
  290    HH = D(I)
         D(I) = AR(I,I)
         AR(I,I) = HH
         AI(I,I) = SCALE * DSQRT(H)
  300 CONTINUE
C
      RETURN
      END
      SUBROUTINE IMTQL1(N,D,E,IERR)
*
*     EISPACK ROUTINE
*     MODIFIED FOR COMPARISON WITH LAPACK ROUTINES.
*
*     CONVERGENCE TEST WAS MODIFIED TO BE THE SAME AS IN DSTEQR.
*
C
      INTEGER I,J,L,M,N,II,MML,IERR
      DOUBLE PRECISION D(N),E(N)
      DOUBLE PRECISION B,C,F,G,P,R,S,TST1,TST2,PYTHAG
      DOUBLE PRECISION EPS, TST
      DOUBLE PRECISION DLAMCH
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE CONTRIBUTIONS TO OPS FROM
*     FUNCTION PYTHAG.  IT IS PASSED TO AND FROM PYTHAG
*     THROUGH COMMON BLOCK PYTHOP.
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
      COMMON             / PYTHOP / OPST
*
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS, OPST
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE IMTQL1,
C     NUM. MATH. 12, 377-383(1968) BY MARTIN AND WILKINSON,
C     AS MODIFIED IN NUM. MATH. 15, 450(1970) BY DUBRULLE.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
C     TRIDIAGONAL MATRIX BY THE IMPLICIT QL METHOD.
C
C     ON INPUT
C
C        N IS THE ORDER OF THE MATRIX.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY.
C
C      ON OUTPUT
C
C        D CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
C          ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
C          THE SMALLEST EIGENVALUES.
C
C        E HAS BEEN DESTROYED.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
C                     DETERMINED AFTER 40 ITERATIONS.
C
C     CALLS PYTHAG FOR  SQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      IERR = 0
      IF (N .EQ. 1) GO TO 1001
*
*        INITIALIZE ITERATION COUNT AND OPST
            ITCNT = 0
            OPST = 0
*
*     DETERMINE THE UNIT ROUNDOFF FOR THIS ENVIRONMENT.
*
      EPS = DLAMCH( 'EPSILON' )
C
      DO 100 I = 2, N
  100 E(I-1) = E(I)
C
      E(N) = 0.0D0
C
      DO 290 L = 1, N
         J = 0
C     .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
  105    DO 110 M = L, N
            IF (M .EQ. N) GO TO 120
            TST = ABS( E(M) )
            IF( TST .LE. EPS * ( ABS(D(M)) + ABS(D(M+1)) ) ) GO TO 120
*            TST1 = ABS(D(M)) + ABS(D(M+1))
*            TST2 = TST1 + ABS(E(M))
*            IF (TST2 .EQ. TST1) GO TO 120
  110    CONTINUE
C
  120    P = D(L)
*
*        INCREMENT OPCOUNT FOR FINDING SMALL SUBDIAGONAL ELEMENT.
            OPS = OPS + 2*( MIN(M,N-1)-L+1 )
         IF (M .EQ. L) GO TO 215
         IF (J .EQ. 40) GO TO 1000
         J = J + 1
C     .......... FORM SHIFT ..........
         G = (D(L+1) - P) / (2.0D0 * E(L))
         R = PYTHAG(G,1.0D0)
         G = D(M) - P + E(L) / (G + DSIGN(R,G))
*
*        INCREMENT OPCOUNT FOR FORMING SHIFT.
            OPS = OPS + 7
         S = 1.0D0
         C = 1.0D0
         P = 0.0D0
         MML = M - L
C     .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
         DO 200 II = 1, MML
            I = M - II
            F = S * E(I)
            B = C * E(I)
            R = PYTHAG(F,G)
            E(I+1) = R
            IF (R .EQ. 0.0D0) GO TO 210
            S = F / R
            C = G / R
            G = D(I+1) - P
            R = (D(I) - G) * S + 2.0D0 * C * B
            P = S * R
            D(I+1) = G + P
            G = C * R - B
  200    CONTINUE
C
         D(L) = D(L) - P
         E(L) = G
         E(M) = 0.0D0
*
*        INCREMENT OPCOUNT FOR INNER LOOP.
            OPS = OPS + MML*14 + 1
*
*        INCREMENT ITERATION COUNTER
            ITCNT = ITCNT + 1
         GO TO 105
C     .......... RECOVER FROM UNDERFLOW ..........
  210    D(I+1) = D(I+1) - P
         E(M) = 0.0D0
*
*        INCREMENT OPCOUNT FOR INNER LOOP, WHEN UNDERFLOW OCCURS.
            OPS = OPS + 2+(II-1)*14 + 1
         GO TO 105
C     .......... ORDER EIGENVALUES ..........
  215    IF (L .EQ. 1) GO TO 250
C     .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
         DO 230 II = 2, L
            I = L + 2 - II
            IF (P .GE. D(I-1)) GO TO 270
            D(I) = D(I-1)
  230    CONTINUE
C
  250    I = 1
  270    D(I) = P
  290 CONTINUE
C
      GO TO 1001
C     .......... SET ERROR -- NO CONVERGENCE TO AN
C                EIGENVALUE AFTER 40 ITERATIONS ..........
 1000 IERR = L
 1001 CONTINUE
*
*     COMPUTE FINAL OP COUNT
      OPS = OPS + OPST
      RETURN
      END
      SUBROUTINE IMTQL2(NM,N,D,E,Z,IERR)
*
*     EISPACK ROUTINE.  MODIFIED FOR COMPARISON WITH LAPACK.
*
*     CONVERGENCE TEST WAS MODIFIED TO BE THE SAME AS IN DSTEQR.
*
C
      INTEGER I,J,K,L,M,N,II,NM,MML,IERR
      DOUBLE PRECISION D(N),E(N),Z(NM,N)
      DOUBLE PRECISION B,C,F,G,P,R,S,TST1,TST2,PYTHAG
      DOUBLE PRECISION EPS, TST
      DOUBLE PRECISION DLAMCH
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE CONTRIBUTIONS TO OPS FROM
*     FUNCTION PYTHAG.  IT IS PASSED TO AND FROM PYTHAG
*     THROUGH COMMON BLOCK PYTHOP.
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
      COMMON             / PYTHOP / OPST
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS, OPST
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE IMTQL2,
C     NUM. MATH. 12, 377-383(1968) BY MARTIN AND WILKINSON,
C     AS MODIFIED IN NUM. MATH. 15, 450(1970) BY DUBRULLE.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
C     OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE IMPLICIT QL METHOD.
C     THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO
C     BE FOUND IF  TRED2  HAS BEEN USED TO REDUCE THIS
C     FULL MATRIX TO TRIDIAGONAL FORM.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY.
C
C        Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
C          REDUCTION BY  TRED2, IF PERFORMED.  IF THE EIGENVECTORS
C          OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
C          THE IDENTITY MATRIX.
C
C      ON OUTPUT
C
C        D CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT
C          UNORDERED FOR INDICES 1,2,...,IERR-1.
C
C        E HAS BEEN DESTROYED.
C
C        Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC
C          TRIDIAGONAL (OR FULL) MATRIX.  IF AN ERROR EXIT IS MADE,
C          Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED
C          EIGENVALUES.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
C                     DETERMINED AFTER 40 ITERATIONS.
C
C     CALLS PYTHAG FOR  SQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      IERR = 0
      IF (N .EQ. 1) GO TO 1001
*
*        INITIALIZE ITERATION COUNT AND OPST
            ITCNT = 0
            OPST = 0
*
*     DETERMINE UNIT ROUNDOFF FOR THIS MACHINE.
      EPS = DLAMCH( 'EPSILON' )
C
      DO 100 I = 2, N
  100 E(I-1) = E(I)
C
      E(N) = 0.0D0
C
      DO 240 L = 1, N
         J = 0
C     .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
  105    DO 110 M = L, N
            IF (M .EQ. N) GO TO 120
*            TST1 = ABS(D(M)) + ABS(D(M+1))
*            TST2 = TST1 + ABS(E(M))
*            IF (TST2 .EQ. TST1) GO TO 120
            TST = ABS( E(M) )
            IF( TST .LE. EPS * ( ABS(D(M)) + ABS(D(M+1)) ) ) GO TO 120
  110    CONTINUE
C
  120    P = D(L)
*
*        INCREMENT OPCOUNT FOR FINDING SMALL SUBDIAGONAL ELEMENT.
            OPS = OPS + 2*( MIN(M,N)-L+1 )
         IF (M .EQ. L) GO TO 240
         IF (J .EQ. 40) GO TO 1000
         J = J + 1
C     .......... FORM SHIFT ..........
         G = (D(L+1) - P) / (2.0D0 * E(L))
         R = PYTHAG(G,1.0D0)
         G = D(M) - P + E(L) / (G + DSIGN(R,G))
*
*        INCREMENT OPCOUNT FOR FORMING SHIFT.
            OPS = OPS + 7
         S = 1.0D0
         C = 1.0D0
         P = 0.0D0
         MML = M - L
C     .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
         DO 200 II = 1, MML
            I = M - II
            F = S * E(I)
            B = C * E(I)
            R = PYTHAG(F,G)
            E(I+1) = R
            IF (R .EQ. 0.0D0) GO TO 210
            S = F / R
            C = G / R
            G = D(I+1) - P
            R = (D(I) - G) * S + 2.0D0 * C * B
            P = S * R
            D(I+1) = G + P
            G = C * R - B
C     .......... FORM VECTOR ..........
            DO 180 K = 1, N
               F = Z(K,I+1)
               Z(K,I+1) = S * Z(K,I) + C * F
               Z(K,I) = C * Z(K,I) - S * F
  180       CONTINUE
C
  200    CONTINUE
C
         D(L) = D(L) - P
         E(L) = G
         E(M) = 0.0D0
*
*        INCREMENT OPCOUNT FOR INNER LOOP.
            OPS = OPS + MML*( 14+6*N ) + 1
*
*        INCREMENT ITERATION COUNTER
            ITCNT = ITCNT + 1
         GO TO 105
C     .......... RECOVER FROM UNDERFLOW ..........
  210    D(I+1) = D(I+1) - P
         E(M) = 0.0D0
*
*        INCREMENT OPCOUNT FOR INNER LOOP, WHEN UNDERFLOW OCCURS.
            OPS = OPS + 2+(II-1)*(14+6*N) + 1
         GO TO 105
  240 CONTINUE
C     .......... ORDER EIGENVALUES AND EIGENVECTORS ..........
      DO 300 II = 2, N
         I = II - 1
         K = I
         P = D(I)
C
         DO 260 J = II, N
            IF (D(J) .GE. P) GO TO 260
            K = J
            P = D(J)
  260    CONTINUE
C
         IF (K .EQ. I) GO TO 300
         D(K) = D(I)
         D(I) = P
C
         DO 280 J = 1, N
            P = Z(J,I)
            Z(J,I) = Z(J,K)
            Z(J,K) = P
  280    CONTINUE
C
  300 CONTINUE
C
      GO TO 1001
C     .......... SET ERROR -- NO CONVERGENCE TO AN
C                EIGENVALUE AFTER 40 ITERATIONS ..........
 1000 IERR = L
 1001 CONTINUE
*
*     COMPUTE FINAL OP COUNT
      OPS = OPS + OPST
      RETURN
      END
      DOUBLE PRECISION FUNCTION PYTHAG(A,B)
      DOUBLE PRECISION A,B
C
C     FINDS SQRT(A**2+B**2) WITHOUT OVERFLOW OR DESTRUCTIVE UNDERFLOW
C
*
*     COMMON BLOCK TO RETURN OPERATION COUNT
*     OPST IS ONLY INCREMENTED HERE
*     .. COMMON BLOCKS ..
      COMMON             / PYTHOP / OPST
*     ..
*     .. SCALARS IN COMMON
      DOUBLE PRECISION   OPST
*     ..
      DOUBLE PRECISION P,R,S,T,U
      P = DMAX1(DABS(A),DABS(B))
      IF (P .EQ. 0.0D0) GO TO 20
      R = (DMIN1(DABS(A),DABS(B))/P)**2
*
*     INCREMENT OPST
      OPST = OPST + 2
   10 CONTINUE
         T = 4.0D0 + R
         IF (T .EQ. 4.0D0) GO TO 20
         S = R/T
         U = 1.0D0 + 2.0D0*S
         P = U*P
         R = (S/U)**2 * R
*
*        INCREMENT OPST
            OPST = OPST + 8
      GO TO 10
   20 PYTHAG = P
      RETURN
      END
      DOUBLE PRECISION FUNCTION EPSLON (X)
      DOUBLE PRECISION X
C
C     ESTIMATE UNIT ROUNDOFF IN QUANTITIES OF SIZE X.
C
      DOUBLE PRECISION A,B,C,EPS
C
C     THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL SYSTEMS
C     SATISFYING THE FOLLOWING TWO ASSUMPTIONS,
C        1.  THE BASE USED IN REPRESENTING FLOATING POINT
C            NUMBERS IS NOT A POWER OF THREE.
C        2.  THE QUANTITY  A  IN STATEMENT 10 IS REPRESENTED TO
C            THE ACCURACY USED IN FLOATING POINT VARIABLES
C            THAT ARE STORED IN MEMORY.
C     THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO
C     FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING
C     ASSUMPTION 2.
C     UNDER THESE ASSUMPTIONS, IT SHOULD BE TRUE THAT,
C            A  IS NOT EXACTLY EQUAL TO FOUR-THIRDS,
C            B  HAS A ZERO FOR ITS LAST BIT OR DIGIT,
C            C  IS NOT EXACTLY EQUAL TO ONE,
C            EPS  MEASURES THE SEPARATION OF 1.0 FROM
C                 THE NEXT LARGER FLOATING POINT NUMBER.
C     THE DEVELOPERS OF EISPACK WOULD APPRECIATE BEING INFORMED
C     ABOUT ANY SYSTEMS WHERE THESE ASSUMPTIONS DO NOT HOLD.
C
C     THIS VERSION DATED 4/6/83.
C
      A = 4.0D0/3.0D0
   10 B = A - 1.0D0
      C = B + B + B
      EPS = DABS(C-1.0D0)
      IF (EPS .EQ. 0.0D0) GO TO 10
      EPSLON = EPS*DABS(X)
      RETURN
      END
      SUBROUTINE BISECT(N,EPS1,D,E,E2,LB,UB,MM,M,W,IND,IERR,RV4,RV5)
*
*     EISPACK ROUTINE.
*     MODIFIED FOR COMPARISON WITH LAPACK ROUTINES.
*
*     CONVERGENCE TEST WAS MODIFIED TO BE THE SAME AS IN DSTEBZ.
*
C
      INTEGER I,J,K,L,M,N,P,Q,R,S,II,MM,M1,M2,TAG,IERR,ISTURM
      DOUBLE PRECISION D(N),E(N),E2(N),W(MM),RV4(N),RV5(N)
      DOUBLE PRECISION U,V,LB,T1,T2,UB,XU,X0,X1,EPS1,TST1,TST2,EPSLON
      INTEGER IND(MM)
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE BISECTION TECHNIQUE
C     IN THE ALGOL PROCEDURE TRISTURM BY PETERS AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
C
C     THIS SUBROUTINE FINDS THOSE EIGENVALUES OF A TRIDIAGONAL
C     SYMMETRIC MATRIX WHICH LIE IN A SPECIFIED INTERVAL,
C     USING BISECTION.
C
C     ON INPUT
C
C        N IS THE ORDER OF THE MATRIX.
C
C        EPS1 IS AN ABSOLUTE ERROR TOLERANCE FOR THE COMPUTED
C          EIGENVALUES.  IF THE INPUT EPS1 IS NON-POSITIVE,
C          IT IS RESET FOR EACH SUBMATRIX TO A DEFAULT VALUE,
C          NAMELY, MINUS THE PRODUCT OF THE RELATIVE MACHINE
C          PRECISION AND THE 1-NORM OF THE SUBMATRIX.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY.
C
C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C          E2(1) IS ARBITRARY.
C
C        LB AND UB DEFINE THE INTERVAL TO BE SEARCHED FOR EIGENVALUES.
C          IF LB IS NOT LESS THAN UB, NO EIGENVALUES WILL BE FOUND.
C
C        MM SHOULD BE SET TO AN UPPER BOUND FOR THE NUMBER OF
C          EIGENVALUES IN THE INTERVAL.  WARNING. IF MORE THAN
C          MM EIGENVALUES ARE DETERMINED TO LIE IN THE INTERVAL,
C          AN ERROR RETURN IS MADE WITH NO EIGENVALUES FOUND.
C
C     ON OUTPUT
C
C        EPS1 IS UNALTERED UNLESS IT HAS BEEN RESET TO ITS
C          (LAST) DEFAULT VALUE.
C
C        D AND E ARE UNALTERED.
C
C        ELEMENTS OF E2, CORRESPONDING TO ELEMENTS OF E REGARDED
C          AS NEGLIGIBLE, HAVE BEEN REPLACED BY ZERO CAUSING THE
C          MATRIX TO SPLIT INTO A DIRECT SUM OF SUBMATRICES.
C          E2(1) IS ALSO SET TO ZERO.
C
C        M IS THE NUMBER OF EIGENVALUES DETERMINED TO LIE IN (LB,UB).
C
C        W CONTAINS THE M EIGENVALUES IN ASCENDING ORDER.
C
C        IND CONTAINS IN ITS FIRST M POSITIONS THE SUBMATRIX INDICES
C          ASSOCIATED WITH THE CORRESPONDING EIGENVALUES IN W --
C          1 FOR EIGENVALUES BELONGING TO THE FIRST SUBMATRIX FROM
C          THE TOP, 2 FOR THOSE BELONGING TO THE SECOND SUBMATRIX, ETC..
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          3*N+1      IF M EXCEEDS MM.
C
C        RV4 AND RV5 ARE TEMPORARY STORAGE ARRAYS.
C
C     THE ALGOL PROCEDURE STURMCNT CONTAINED IN TRISTURM
C     APPEARS IN BISECT IN-LINE.
C
C     NOTE THAT SUBROUTINE TQL1 OR IMTQL1 IS GENERALLY FASTER THAN
C     BISECT, IF MORE THAN N/4 EIGENVALUES ARE TO BE FOUND.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      DOUBLE PRECISION ONE
      PARAMETER        ( ONE = 1.0D0 )
      DOUBLE PRECISION RELFAC
      PARAMETER        ( RELFAC = 2.0D0 )
      DOUBLE PRECISION ATOLI, RTOLI, SAFEMN, TMP1, TMP2, TNORM, ULP
      DOUBLE PRECISION DLAMCH, PIVMIN
      EXTERNAL DLAMCH
*        INITIALIZE ITERATION COUNT.
            ITCNT = 0
      SAFEMN = DLAMCH( 'S' )
      ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
      RTOLI = ULP*RELFAC
      IERR = 0
      TAG = 0
      T1 = LB
      T2 = UB
C     .......... LOOK FOR SMALL SUB-DIAGONAL ENTRIES ..........
      DO 40 I = 1, N
         IF (I .EQ. 1) GO TO 20
CCC         TST1 = DABS(D(I)) + DABS(D(I-1))
CCC         TST2 = TST1 + DABS(E(I))
CCC         IF (TST2 .GT. TST1) GO TO 40
         TMP1 = E( I )**2
         IF( ABS( D(I)*D(I-1) )*ULP**2+SAFEMN.LE.TMP1 )
     $      GO TO 40
   20    E2(I) = 0.0D0
   40 CONTINUE
*           INCREMENT OPCOUNT FOR DETERMINING IF MATRIX SPLITS.
               OPS = OPS + 5*( N-1 )
C
C                COMPUTE QUANTITIES NEEDED FOR CONVERGENCE TEST.
      TMP1 = D( 1 ) - ABS( E( 2 ) )
      TMP2 = D( 1 ) + ABS( E( 2 ) )
      PIVMIN = ONE
      DO 41 I = 2, N - 1
         TMP1 = MIN( TMP1, D( I )-ABS( E( I ) )-ABS( E( I+1 ) ) )
         TMP2 = MAX( TMP2, D( I )+ABS( E( I ) )+ABS( E( I+1 ) ) )
         PIVMIN = MAX( PIVMIN, E( I )**2 )
   41 CONTINUE
      TMP1 = MIN( TMP1, D( N )-ABS( E( N ) ) )
      TMP2 = MAX( TMP2, D( N )+ABS( E( N ) ) )
      PIVMIN = MAX( PIVMIN, E( N )**2 )
      PIVMIN = PIVMIN*SAFEMN
      TNORM = MAX( ABS(TMP1), ABS(TMP2) )
      ATOLI = ULP*TNORM
*        INCREMENT OPCOUNT FOR COMPUTING THESE QUANTITIES.
            OPS = OPS + 4*( N-1 )
C
C     .......... DETERMINE THE NUMBER OF EIGENVALUES
C                IN THE INTERVAL ..........
      P = 1
      Q = N
      X1 = UB
      ISTURM = 1
      GO TO 320
   60 M = S
      X1 = LB
      ISTURM = 2
      GO TO 320
   80 M = M - S
      IF (M .GT. MM) GO TO 980
      Q = 0
      R = 0
C     .......... ESTABLISH AND PROCESS NEXT SUBMATRIX, REFINING
C                INTERVAL BY THE GERSCHGORIN BOUNDS ..........
  100 IF (R .EQ. M) GO TO 1001
      TAG = TAG + 1
      P = Q + 1
      XU = D(P)
      X0 = D(P)
      U = 0.0D0
C
      DO 120 Q = P, N
         X1 = U
         U = 0.0D0
         V = 0.0D0
         IF (Q .EQ. N) GO TO 110
         U = DABS(E(Q+1))
         V = E2(Q+1)
  110    XU = DMIN1(D(Q)-(X1+U),XU)
         X0 = DMAX1(D(Q)+(X1+U),X0)
         IF (V .EQ. 0.0D0) GO TO 140
  120 CONTINUE
*        INCREMENT OPCOUNT FOR REFINING INTERVAL.
            OPS = OPS + ( N-P+1 )*2
C
  140 X1 = EPSLON(DMAX1(DABS(XU),DABS(X0)))
      IF (EPS1 .LE. 0.0D0) EPS1 = -X1
      IF (P .NE. Q) GO TO 180
C     .......... CHECK FOR ISOLATED ROOT WITHIN INTERVAL ..........
      IF (T1 .GT. D(P) .OR. D(P) .GE. T2) GO TO 940
      M1 = P
      M2 = P
      RV5(P) = D(P)
      GO TO 900
  180 X1 = X1 * (Q - P + 1)
      LB = DMAX1(T1,XU-X1)
      UB = DMIN1(T2,X0+X1)
      X1 = LB
      ISTURM = 3
      GO TO 320
  200 M1 = S + 1
      X1 = UB
      ISTURM = 4
      GO TO 320
  220 M2 = S
      IF (M1 .GT. M2) GO TO 940
C     .......... FIND ROOTS BY BISECTION ..........
      X0 = UB
      ISTURM = 5
C
      DO 240 I = M1, M2
         RV5(I) = UB
         RV4(I) = LB
  240 CONTINUE
C     .......... LOOP FOR K-TH EIGENVALUE
C                FOR K=M2 STEP -1 UNTIL M1 DO --
C                (-DO- NOT USED TO LEGALIZE -COMPUTED GO TO-) ..........
      K = M2
  250    XU = LB
C     .......... FOR I=K STEP -1 UNTIL M1 DO -- ..........
         DO 260 II = M1, K
            I = M1 + K - II
            IF (XU .GE. RV4(I)) GO TO 260
            XU = RV4(I)
            GO TO 280
  260    CONTINUE
C
  280    IF (X0 .GT. RV5(K)) X0 = RV5(K)
C     .......... NEXT BISECTION STEP ..........
  300    X1 = (XU + X0) * 0.5D0
CCC         IF ((X0 - XU) .LE. DABS(EPS1)) GO TO 420
CCC         TST1 = 2.0D0 * (DABS(XU) + DABS(X0))
CCC         TST2 = TST1 + (X0 - XU)
CCC         IF (TST2 .EQ. TST1) GO TO 420
         TMP1 = ABS( X0 - XU )
         TMP2 = MAX( ABS( X0 ), ABS( XU ) )
         IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) )
     $      GO TO 420
C     .......... IN-LINE PROCEDURE FOR STURM SEQUENCE ..........
  320    S = P - 1
         U = 1.0D0
C
         DO 340 I = P, Q
            IF (U .NE. 0.0D0) GO TO 325
            V = DABS(E(I)) / EPSLON(1.0D0)
            IF (E2(I) .EQ. 0.0D0) V = 0.0D0
            GO TO 330
  325       V = E2(I) / U
  330       U = D(I) - X1 - V
            IF (U .LT. 0.0D0) S = S + 1
  340    CONTINUE
*           INCREMENT OPCOUNT FOR STURM SEQUENCE.
               OPS = OPS + ( Q-P+1 )*3
*           INCREMENT ITERATION COUNTER.
               ITCNT = ITCNT + 1
C
         GO TO (60,80,200,220,360), ISTURM
C     .......... REFINE INTERVALS ..........
  360    IF (S .GE. K) GO TO 400
         XU = X1
         IF (S .GE. M1) GO TO 380
         RV4(M1) = X1
         GO TO 300
  380    RV4(S+1) = X1
         IF (RV5(S) .GT. X1) RV5(S) = X1
         GO TO 300
  400    X0 = X1
         GO TO 300
C     .......... K-TH EIGENVALUE FOUND ..........
  420    RV5(K) = X1
      K = K - 1
      IF (K .GE. M1) GO TO 250
C     .......... ORDER EIGENVALUES TAGGED WITH THEIR
C                SUBMATRIX ASSOCIATIONS ..........
  900 S = R
      R = R + M2 - M1 + 1
      J = 1
      K = M1
C
      DO 920 L = 1, R
         IF (J .GT. S) GO TO 910
         IF (K .GT. M2) GO TO 940
         IF (RV5(K) .GE. W(L)) GO TO 915
C
         DO 905 II = J, S
            I = L + S - II
            W(I+1) = W(I)
            IND(I+1) = IND(I)
  905    CONTINUE
C
  910    W(L) = RV5(K)
         IND(L) = TAG
         K = K + 1
         GO TO 920
  915    J = J + 1
  920 CONTINUE
C
  940 IF (Q .LT. N) GO TO 100
      GO TO 1001
C     .......... SET ERROR -- UNDERESTIMATE OF NUMBER OF
C                EIGENVALUES IN INTERVAL ..........
  980 IERR = 3 * N + 1
 1001 LB = T1
      UB = T2
      RETURN
      END
      SUBROUTINE TINVIT(NM,N,D,E,E2,M,W,IND,Z,
     X                  IERR,RV1,RV2,RV3,RV4,RV6)
*
*     EISPACK ROUTINE.
*
*     CONVERGENCE TEST WAS NOT MODIFIED, SINCE IT SHOULD GIVE
*     APPROXIMATELY THE SAME LEVEL OF ACCURACY AS LAPACK ROUTINE,
*     ALTHOUGH THE EIGENVECTORS MAY NOT BE AS CLOSE TO ORTHOGONAL.
*
C
      INTEGER I,J,M,N,P,Q,R,S,II,IP,JJ,NM,ITS,TAG,IERR,GROUP
      DOUBLE PRECISION D(N),E(N),E2(N),W(M),Z(NM,M),
     X       RV1(N),RV2(N),RV3(N),RV4(N),RV6(N)
      DOUBLE PRECISION U,V,UK,XU,X0,X1,EPS2,EPS3,EPS4,NORM,ORDER,EPSLON,
     X       PYTHAG
      INTEGER IND(M)
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
      COMMON             / PYTHOP / OPST
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS, OPST
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE INVERSE ITERATION TECH-
C     NIQUE IN THE ALGOL PROCEDURE TRISTURM BY PETERS AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
C
C     THIS SUBROUTINE FINDS THOSE EIGENVECTORS OF A TRIDIAGONAL
C     SYMMETRIC MATRIX CORRESPONDING TO SPECIFIED EIGENVALUES,
C     USING INVERSE ITERATION.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY.
C
C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E,
C          WITH ZEROS CORRESPONDING TO NEGLIGIBLE ELEMENTS OF E.
C          E(I) IS CONSIDERED NEGLIGIBLE IF IT IS NOT LARGER THAN
C          THE PRODUCT OF THE RELATIVE MACHINE PRECISION AND THE SUM
C          OF THE MAGNITUDES OF D(I) AND D(I-1).  E2(1) MUST CONTAIN
C          0.0D0 IF THE EIGENVALUES ARE IN ASCENDING ORDER, OR 2.0D0
C          IF THE EIGENVALUES ARE IN DESCENDING ORDER.  IF  BISECT,
C          TRIDIB, OR  IMTQLV  HAS BEEN USED TO FIND THE EIGENVALUES,
C          THEIR OUTPUT E2 ARRAY IS EXACTLY WHAT IS EXPECTED HERE.
C
C        M IS THE NUMBER OF SPECIFIED EIGENVALUES.
C
C        W CONTAINS THE M EIGENVALUES IN ASCENDING OR DESCENDING ORDER.
C
C        IND CONTAINS IN ITS FIRST M POSITIONS THE SUBMATRIX INDICES
C          ASSOCIATED WITH THE CORRESPONDING EIGENVALUES IN W --
C          1 FOR EIGENVALUES BELONGING TO THE FIRST SUBMATRIX FROM
C          THE TOP, 2 FOR THOSE BELONGING TO THE SECOND SUBMATRIX, ETC.
C
C     ON OUTPUT
C
C        ALL INPUT ARRAYS ARE UNALTERED.
C
C        Z CONTAINS THE ASSOCIATED SET OF ORTHONORMAL EIGENVECTORS.
C          ANY VECTOR WHICH FAILS TO CONVERGE IS SET TO ZERO.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          -R         IF THE EIGENVECTOR CORRESPONDING TO THE R-TH
C                     EIGENVALUE FAILS TO CONVERGE IN 5 ITERATIONS.
C
C        RV1, RV2, RV3, RV4, AND RV6 ARE TEMPORARY STORAGE ARRAYS.
C
C     CALLS PYTHAG FOR  DSQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
*        INITIALIZE ITERATION COUNT.
            ITCNT = 0
      IERR = 0
      IF (M .EQ. 0) GO TO 1001
      TAG = 0
      ORDER = 1.0D0 - E2(1)
      Q = 0
C     .......... ESTABLISH AND PROCESS NEXT SUBMATRIX ..........
  100 P = Q + 1
C
      DO 120 Q = P, N
         IF (Q .EQ. N) GO TO 140
         IF (E2(Q+1) .EQ. 0.0D0) GO TO 140
  120 CONTINUE
C     .......... FIND VECTORS BY INVERSE ITERATION ..........
  140 TAG = TAG + 1
      S = 0
C
      DO 920 R = 1, M
         IF (IND(R) .NE. TAG) GO TO 920
         ITS = 1
         X1 = W(R)
         IF (S .NE. 0) GO TO 510
C     .......... CHECK FOR ISOLATED ROOT ..........
         XU = 1.0D0
         IF (P .NE. Q) GO TO 490
         RV6(P) = 1.0D0
         GO TO 870
  490    NORM = DABS(D(P))
         IP = P + 1
C
         DO 500 I = IP, Q
  500    NORM = DMAX1(NORM, DABS(D(I))+DABS(E(I)))
C     .......... EPS2 IS THE CRITERION FOR GROUPING,
C                EPS3 REPLACES ZERO PIVOTS AND EQUAL
C                ROOTS ARE MODIFIED BY EPS3,
C                EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW ..........
         EPS2 = 1.0D-3 * NORM
         EPS3 = EPSLON(NORM)
         UK = Q - P + 1
         EPS4 = UK * EPS3
         UK = EPS4 / DSQRT(UK)
*           INCREMENT OPCOUNT FOR COMPUTING CRITERIA.
               OPS = OPS + ( Q-IP+4 )
         S = P
  505    GROUP = 0
         GO TO 520
C     .......... LOOK FOR CLOSE OR COINCIDENT ROOTS ..........
  510    IF (DABS(X1-X0) .GE. EPS2) GO TO 505
         GROUP = GROUP + 1
         IF (ORDER * (X1 - X0) .LE. 0.0D0) X1 = X0 + ORDER * EPS3
C     .......... ELIMINATION WITH INTERCHANGES AND
C                INITIALIZATION OF VECTOR ..........
  520    V = 0.0D0
C
         DO 580 I = P, Q
            RV6(I) = UK
            IF (I .EQ. P) GO TO 560
            IF (DABS(E(I)) .LT. DABS(U)) GO TO 540
C     .......... WARNING -- A DIVIDE CHECK MAY OCCUR HERE IF
C                E2 ARRAY HAS NOT BEEN SPECIFIED CORRECTLY ..........
            XU = U / E(I)
            RV4(I) = XU
            RV1(I-1) = E(I)
            RV2(I-1) = D(I) - X1
            RV3(I-1) = 0.0D0
            IF (I .NE. Q) RV3(I-1) = E(I+1)
            U = V - XU * RV2(I-1)
            V = -XU * RV3(I-1)
            GO TO 580
  540       XU = E(I) / U
            RV4(I) = XU
            RV1(I-1) = U
            RV2(I-1) = V
            RV3(I-1) = 0.0D0
  560       U = D(I) - X1 - XU * V
            IF (I .NE. Q) V = E(I+1)
  580    CONTINUE
*           INCREMENT OPCOUNT FOR ELIMINATION.
               OPS = OPS + ( Q-P+1 )*5
C
         IF (U .EQ. 0.0D0) U = EPS3
         RV1(Q) = U
         RV2(Q) = 0.0D0
         RV3(Q) = 0.0D0
C     .......... BACK SUBSTITUTION
C                FOR I=Q STEP -1 UNTIL P DO -- ..........
  600    DO 620 II = P, Q
            I = P + Q - II
            RV6(I) = (RV6(I) - U * RV2(I) - V * RV3(I)) / RV1(I)
            V = U
            U = RV6(I)
  620    CONTINUE
*           INCREMENT OPCOUNT FOR BACK SUBSTITUTION.
               OPS = OPS + ( Q-P+1 )*5
C     .......... ORTHOGONALIZE WITH RESPECT TO PREVIOUS
C                MEMBERS OF GROUP ..........
         IF (GROUP .EQ. 0) GO TO 700
         J = R
C
         DO 680 JJ = 1, GROUP
  630       J = J - 1
            IF (IND(J) .NE. TAG) GO TO 630
            XU = 0.0D0
C
            DO 640 I = P, Q
  640       XU = XU + RV6(I) * Z(I,J)
C
            DO 660 I = P, Q
  660       RV6(I) = RV6(I) - XU * Z(I,J)
C
*              INCREMENT OPCOUNT FOR ORTHOGONALIZING.
                  OPS = OPS + ( Q-P+1 )*4
  680    CONTINUE
C
  700    NORM = 0.0D0
C
         DO 720 I = P, Q
  720    NORM = NORM + DABS(RV6(I))
*           INCREMENT OPCOUNT FOR COMPUTING NORM.
               OPS = OPS + ( Q-P+1 )
C
         IF (NORM .GE. 1.0D0) GO TO 840
C     .......... FORWARD SUBSTITUTION ..........
         IF (ITS .EQ. 5) GO TO 830
         IF (NORM .NE. 0.0D0) GO TO 740
         RV6(S) = EPS4
         S = S + 1
         IF (S .GT. Q) S = P
         GO TO 780
  740    XU = EPS4 / NORM
C
         DO 760 I = P, Q
  760    RV6(I) = RV6(I) * XU
C     .......... ELIMINATION OPERATIONS ON NEXT VECTOR
C                ITERATE ..........
  780    DO 820 I = IP, Q
            U = RV6(I)
C     .......... IF RV1(I-1) .EQ. E(I), A ROW INTERCHANGE
C                WAS PERFORMED EARLIER IN THE
C                TRIANGULARIZATION PROCESS ..........
            IF (RV1(I-1) .NE. E(I)) GO TO 800
            U = RV6(I-1)
            RV6(I-1) = RV6(I)
  800       RV6(I) = U - RV4(I) * RV6(I-1)
  820    CONTINUE
*           INCREMENT OPCOUNT FOR FORWARD SUBSTITUTION.
               OPS = OPS + ( Q-P+1 ) + ( Q-IP+1 )*2
C
         ITS = ITS + 1
*           INCREMENT ITERATION COUNTER.
               ITCNT = ITCNT + 1
         GO TO 600
C     .......... SET ERROR -- NON-CONVERGED EIGENVECTOR ..........
  830    IERR = -R
         XU = 0.0D0
         GO TO 870
C     .......... NORMALIZE SO THAT SUM OF SQUARES IS
C                1 AND EXPAND TO FULL ORDER ..........
  840    U = 0.0D0
C
         DO 860 I = P, Q
  860    U = PYTHAG(U,RV6(I))
C
         XU = 1.0D0 / U
C
  870    DO 880 I = 1, N
  880    Z(I,R) = 0.0D0
C
         DO 900 I = P, Q
  900    Z(I,R) = RV6(I) * XU
*           INCREMENT OPCOUNT FOR NORMALIZING.
               OPS = OPS + ( Q-P+1 )
C
         X0 = X1
  920 CONTINUE
C
      IF (Q .LT. N) GO TO 100
*        INCREMENT OPCOUNT FOR USE OF FUNCTION PYTHAG.
            OPS = OPS + OPST
 1001 RETURN
      END
      SUBROUTINE TRIDIB(N,EPS1,D,E,E2,LB,UB,M11,M,W,IND,IERR,RV4,RV5)
*
*     EISPACK ROUTINE.
*     MODIFIED FOR COMPARISON WITH LAPACK ROUTINES.
*
*     CONVERGENCE TEST WAS MODIFIED TO BE THE SAME AS IN DSTEBZ.
*
C
      INTEGER I,J,K,L,M,N,P,Q,R,S,II,M1,M2,M11,M22,TAG,IERR,ISTURM
      DOUBLE PRECISION D(N),E(N),E2(N),W(M),RV4(N),RV5(N)
      DOUBLE PRECISION U,V,LB,T1,T2,UB,XU,X0,X1,EPS1,TST1,TST2,EPSLON
      INTEGER IND(M)
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE BISECT,
C     NUM. MATH. 9, 386-393(1967) BY BARTH, MARTIN, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 249-256(1971).
C
C     THIS SUBROUTINE FINDS THOSE EIGENVALUES OF A TRIDIAGONAL
C     SYMMETRIC MATRIX BETWEEN SPECIFIED BOUNDARY INDICES,
C     USING BISECTION.
C
C     ON INPUT
C
C        N IS THE ORDER OF THE MATRIX.
C
C        EPS1 IS AN ABSOLUTE ERROR TOLERANCE FOR THE COMPUTED
C          EIGENVALUES.  IF THE INPUT EPS1 IS NON-POSITIVE,
C          IT IS RESET FOR EACH SUBMATRIX TO A DEFAULT VALUE,
C          NAMELY, MINUS THE PRODUCT OF THE RELATIVE MACHINE
C          PRECISION AND THE 1-NORM OF THE SUBMATRIX.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY.
C
C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C          E2(1) IS ARBITRARY.
C
C        M11 SPECIFIES THE LOWER BOUNDARY INDEX FOR THE DESIRED
C          EIGENVALUES.
C
C        M SPECIFIES THE NUMBER OF EIGENVALUES DESIRED.  THE UPPER
C          BOUNDARY INDEX M22 IS THEN OBTAINED AS M22=M11+M-1.
C
C     ON OUTPUT
C
C        EPS1 IS UNALTERED UNLESS IT HAS BEEN RESET TO ITS
C          (LAST) DEFAULT VALUE.
C
C        D AND E ARE UNALTERED.
C
C        ELEMENTS OF E2, CORRESPONDING TO ELEMENTS OF E REGARDED
C          AS NEGLIGIBLE, HAVE BEEN REPLACED BY ZERO CAUSING THE
C          MATRIX TO SPLIT INTO A DIRECT SUM OF SUBMATRICES.
C          E2(1) IS ALSO SET TO ZERO.
C
C        LB AND UB DEFINE AN INTERVAL CONTAINING EXACTLY THE DESIRED
C          EIGENVALUES.
C
C        W CONTAINS, IN ITS FIRST M POSITIONS, THE EIGENVALUES
C          BETWEEN INDICES M11 AND M22 IN ASCENDING ORDER.
C
C        IND CONTAINS IN ITS FIRST M POSITIONS THE SUBMATRIX INDICES
C          ASSOCIATED WITH THE CORRESPONDING EIGENVALUES IN W --
C          1 FOR EIGENVALUES BELONGING TO THE FIRST SUBMATRIX FROM
C          THE TOP, 2 FOR THOSE BELONGING TO THE SECOND SUBMATRIX, ETC..
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          3*N+1      IF MULTIPLE EIGENVALUES AT INDEX M11 MAKE
C                     UNIQUE SELECTION IMPOSSIBLE,
C          3*N+2      IF MULTIPLE EIGENVALUES AT INDEX M22 MAKE
C                     UNIQUE SELECTION IMPOSSIBLE.
C
C        RV4 AND RV5 ARE TEMPORARY STORAGE ARRAYS.
C
C     NOTE THAT SUBROUTINE TQL1, IMTQL1, OR TQLRAT IS GENERALLY FASTER
C     THAN TRIDIB, IF MORE THAN N/4 EIGENVALUES ARE TO BE FOUND.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      DOUBLE PRECISION ONE
      PARAMETER        ( ONE = 1.0D0 )
      DOUBLE PRECISION RELFAC
      PARAMETER        ( RELFAC = 2.0D0 )
      DOUBLE PRECISION ATOLI, RTOLI, SAFEMN, TMP1, TMP2, TNORM, ULP
      DOUBLE PRECISION DLAMCH, PIVMIN
      EXTERNAL DLAMCH
*        INITIALIZE ITERATION COUNT.
            ITCNT = 0
      SAFEMN = DLAMCH( 'S' )
      ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
      RTOLI = ULP*RELFAC
      IERR = 0
      TAG = 0
      XU = D(1)
      X0 = D(1)
      U = 0.0D0
C     .......... LOOK FOR SMALL SUB-DIAGONAL ENTRIES AND DETERMINE AN
C                INTERVAL CONTAINING ALL THE EIGENVALUES ..........
      PIVMIN = ONE
      DO 40 I = 1, N
         X1 = U
         U = 0.0D0
         IF (I .NE. N) U = DABS(E(I+1))
         XU = DMIN1(D(I)-(X1+U),XU)
         X0 = DMAX1(D(I)+(X1+U),X0)
         IF (I .EQ. 1) GO TO 20
CCC         TST1 = DABS(D(I)) + DABS(D(I-1))
CCC         TST2 = TST1 + DABS(E(I))
CCC         IF (TST2 .GT. TST1) GO TO 40
         TMP1 = E( I )**2
         IF( ABS( D(I)*D(I-1) )*ULP**2+SAFEMN.LE.TMP1 ) THEN
            PIVMIN = MAX( PIVMIN, TMP1 )
            GO TO 40
         END IF
   20    E2(I) = 0.0D0
   40 CONTINUE
      PIVMIN = PIVMIN*SAFEMN
      TNORM = MAX( ABS( XU ), ABS( X0 ) )
      ATOLI = ULP*TNORM
*        INCREMENT OPCOUNT FOR DETERMINING IF MATRIX SPLITS.
            OPS = OPS + 9*( N-1 )
C
      X1 = N
      X1 = X1 * EPSLON(DMAX1(DABS(XU),DABS(X0)))
      XU = XU - X1
      T1 = XU
      X0 = X0 + X1
      T2 = X0
C     .......... DETERMINE AN INTERVAL CONTAINING EXACTLY
C                THE DESIRED EIGENVALUES ..........
      P = 1
      Q = N
      M1 = M11 - 1
      IF (M1 .EQ. 0) GO TO 75
      ISTURM = 1
   50 V = X1
      X1 = XU + (X0 - XU) * 0.5D0
      IF (X1 .EQ. V) GO TO 980
      GO TO 320
   60 IF (S - M1) 65, 73, 70
   65 XU = X1
      GO TO 50
   70 X0 = X1
      GO TO 50
   73 XU = X1
      T1 = X1
   75 M22 = M1 + M
      IF (M22 .EQ. N) GO TO 90
      X0 = T2
      ISTURM = 2
      GO TO 50
   80 IF (S - M22) 65, 85, 70
   85 T2 = X1
   90 Q = 0
      R = 0
C     .......... ESTABLISH AND PROCESS NEXT SUBMATRIX, REFINING
C                INTERVAL BY THE GERSCHGORIN BOUNDS ..........
  100 IF (R .EQ. M) GO TO 1001
      TAG = TAG + 1
      P = Q + 1
      XU = D(P)
      X0 = D(P)
      U = 0.0D0
C
      DO 120 Q = P, N
         X1 = U
         U = 0.0D0
         V = 0.0D0
         IF (Q .EQ. N) GO TO 110
         U = DABS(E(Q+1))
         V = E2(Q+1)
  110    XU = DMIN1(D(Q)-(X1+U),XU)
         X0 = DMAX1(D(Q)+(X1+U),X0)
         IF (V .EQ. 0.0D0) GO TO 140
  120 CONTINUE
*        INCREMENT OPCOUNT FOR REFINING INTERVAL.
            OPS = OPS + ( N-P+1 )*2
C
  140 X1 = EPSLON(DMAX1(DABS(XU),DABS(X0)))
      IF (EPS1 .LE. 0.0D0) EPS1 = -X1
      IF (P .NE. Q) GO TO 180
C     .......... CHECK FOR ISOLATED ROOT WITHIN INTERVAL ..........
      IF (T1 .GT. D(P) .OR. D(P) .GE. T2) GO TO 940
      M1 = P
      M2 = P
      RV5(P) = D(P)
      GO TO 900
  180 X1 = X1 * (Q - P + 1)
      LB = DMAX1(T1,XU-X1)
      UB = DMIN1(T2,X0+X1)
      X1 = LB
      ISTURM = 3
      GO TO 320
  200 M1 = S + 1
      X1 = UB
      ISTURM = 4
      GO TO 320
  220 M2 = S
      IF (M1 .GT. M2) GO TO 940
C     .......... FIND ROOTS BY BISECTION ..........
      X0 = UB
      ISTURM = 5
C
      DO 240 I = M1, M2
         RV5(I) = UB
         RV4(I) = LB
  240 CONTINUE
C     .......... LOOP FOR K-TH EIGENVALUE
C                FOR K=M2 STEP -1 UNTIL M1 DO --
C                (-DO- NOT USED TO LEGALIZE -COMPUTED GO TO-) ..........
      K = M2
  250    XU = LB
C     .......... FOR I=K STEP -1 UNTIL M1 DO -- ..........
         DO 260 II = M1, K
            I = M1 + K - II
            IF (XU .GE. RV4(I)) GO TO 260
            XU = RV4(I)
            GO TO 280
  260    CONTINUE
C
  280    IF (X0 .GT. RV5(K)) X0 = RV5(K)
C     .......... NEXT BISECTION STEP ..........
  300    X1 = (XU + X0) * 0.5D0
CCC         IF ((X0 - XU) .LE. DABS(EPS1)) GO TO 420
CCC         TST1 = 2.0D0 * (DABS(XU) + DABS(X0))
CCC         TST2 = TST1 + (X0 - XU)
CCC         IF (TST2 .EQ. TST1) GO TO 420
         TMP1 = ABS( X0 - XU )
         TMP2 = MAX( ABS( X0 ), ABS( XU ) )
         IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) )
     $      GO TO 420
C     .......... IN-LINE PROCEDURE FOR STURM SEQUENCE ..........
  320    S = P - 1
         U = 1.0D0
C
         DO 340 I = P, Q
            IF (U .NE. 0.0D0) GO TO 325
            V = DABS(E(I)) / EPSLON(1.0D0)
            IF (E2(I) .EQ. 0.0D0) V = 0.0D0
            GO TO 330
  325       V = E2(I) / U
  330       U = D(I) - X1 - V
            IF (U .LT. 0.0D0) S = S + 1
  340    CONTINUE
*           INCREMENT OPCOUNT FOR STURM SEQUENCE.
               OPS = OPS + ( Q-P+1 )*3
*           INCREMENT ITERATION COUNTER.
               ITCNT = ITCNT + 1
C
         GO TO (60,80,200,220,360), ISTURM
C     .......... REFINE INTERVALS ..........
  360    IF (S .GE. K) GO TO 400
         XU = X1
         IF (S .GE. M1) GO TO 380
         RV4(M1) = X1
         GO TO 300
  380    RV4(S+1) = X1
         IF (RV5(S) .GT. X1) RV5(S) = X1
         GO TO 300
  400    X0 = X1
         GO TO 300
C     .......... K-TH EIGENVALUE FOUND ..........
  420    RV5(K) = X1
      K = K - 1
      IF (K .GE. M1) GO TO 250
C     .......... ORDER EIGENVALUES TAGGED WITH THEIR
C                SUBMATRIX ASSOCIATIONS ..........
  900 S = R
      R = R + M2 - M1 + 1
      J = 1
      K = M1
C
      DO 920 L = 1, R
         IF (J .GT. S) GO TO 910
         IF (K .GT. M2) GO TO 940
         IF (RV5(K) .GE. W(L)) GO TO 915
C
         DO 905 II = J, S
            I = L + S - II
            W(I+1) = W(I)
            IND(I+1) = IND(I)
  905    CONTINUE
C
  910    W(L) = RV5(K)
         IND(L) = TAG
         K = K + 1
         GO TO 920
  915    J = J + 1
  920 CONTINUE
C
  940 IF (Q .LT. N) GO TO 100
      GO TO 1001
C     .......... SET ERROR -- INTERVAL CANNOT BE FOUND CONTAINING
C                EXACTLY THE DESIRED EIGENVALUES ..........
  980 IERR = 3 * N + ISTURM
 1001 LB = T1
      UB = T2
      RETURN
      END
      SUBROUTINE ZSVDC(X,LDX,N,P,S,E,U,LDU,V,LDV,WORK,JOB,INFO)
      INTEGER LDX,N,P,LDU,LDV,JOB,INFO
      COMPLEX*16 X(LDX,*),S(*),E(*),U(LDU,*),V(LDV,*),WORK(*)
*
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, IOPS IS ONLY INCREMENTED
*     IOPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO IOPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON /LATIME/ IOPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION IOPS, ITCNT, IOPST
*     ..
C
C
C     ZSVDC IS A SUBROUTINE TO REDUCE A COMPLEX*16 NXP MATRIX X BY
C     UNITARY TRANSFORMATIONS U AND V TO DIAGONAL FORM.  THE
C     DIAGONAL ELEMENTS S(I) ARE THE SINGULAR VALUES OF X.  THE
C     COLUMNS OF U ARE THE CORRESPONDING LEFT SINGULAR VECTORS,
C     AND THE COLUMNS OF V THE RIGHT SINGULAR VECTORS.
C
C     ON ENTRY
C
C         X         COMPLEX*16(LDX,P), WHERE LDX.GE.N.
C                   X CONTAINS THE MATRIX WHOSE SINGULAR VALUE
C                   DECOMPOSITION IS TO BE COMPUTED.  X IS
C                   DESTROYED BY ZSVDC.
C
C         LDX       INTEGER.
C                   LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C
C         N         INTEGER.
C                   N IS THE NUMBER OF ROWS OF THE MATRIX X.
C
C         P         INTEGER.
C                   P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C
C         LDU       INTEGER.
C                   LDU IS THE LEADING DIMENSION OF THE ARRAY U
C                   (SEE BELOW).
C
C         LDV       INTEGER.
C                   LDV IS THE LEADING DIMENSION OF THE ARRAY V
C                   (SEE BELOW).
C
C         WORK      COMPLEX*16(N).
C                   WORK IS A SCRATCH ARRAY.
C
C         JOB       INTEGER.
C                   JOB CONTROLS THE COMPUTATION OF THE SINGULAR
C                   VECTORS.  IT HAS THE DECIMAL EXPANSION AB
C                   WITH THE FOLLOWING MEANING
C
C                        A.EQ.0    DO NOT COMPUTE THE LEFT SINGULAR
C                                  VECTORS.
C                        A.EQ.1    RETURN THE N LEFT SINGULAR VECTORS
C                                  IN U.
C                        A.GE.2    RETURNS THE FIRST MIN(N,P)
C                                  LEFT SINGULAR VECTORS IN U.
C                        B.EQ.0    DO NOT COMPUTE THE RIGHT SINGULAR
C                                  VECTORS.
C                        B.EQ.1    RETURN THE RIGHT SINGULAR VECTORS
C                                  IN V.
C
C     ON RETURN
C
C         S         COMPLEX*16(MM), WHERE MM=MIN(N+1,P).
C                   THE FIRST MIN(N,P) ENTRIES OF S CONTAIN THE
C                   SINGULAR VALUES OF X ARRANGED IN DESCENDING
C                   ORDER OF MAGNITUDE.
C
C         E         COMPLEX*16(P).
C                   E ORDINARILY CONTAINS ZEROS.  HOWEVER SEE THE
C                   DISCUSSION OF INFO FOR EXCEPTIONS.
C
C         U         COMPLEX*16(LDU,K), WHERE LDU.GE.N.  IF JOBA.EQ.1
C                                   THEN K.EQ.N, IF JOBA.GE.2 THEN
C                                   K.EQ.MIN(N,P).
C                   U CONTAINS THE MATRIX OF LEFT SINGULAR VECTORS.
C                   U IS NOT REFERENCED IF JOBA.EQ.0.  IF N.LE.P
C                   OR IF JOBA.GT.2, THEN U MAY BE IDENTIFIED WITH X
C                   IN THE SUBROUTINE CALL.
C
C         V         COMPLEX*16(LDV,P), WHERE LDV.GE.P.
C                   V CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS.
C                   V IS NOT REFERENCED IF JOBB.EQ.0.  IF P.LE.N,
C                   THEN V MAY BE IDENTIFIED WHTH X IN THE
C                   SUBROUTINE CALL.
C
C         INFO      INTEGER.
C                   THE SINGULAR VALUES (AND THEIR CORRESPONDING
C                   SINGULAR VECTORS) S(INFO+1),S(INFO+2),...,S(M)
C                   ARE CORRECT (HERE M=MIN(N,P)).  THUS IF
C                   INFO.EQ.0, ALL THE SINGULAR VALUES AND THEIR
C                   VECTORS ARE CORRECT.  IN ANY EVENT, THE MATRIX
C                   B = CTRANS(U)*X*V IS THE BIDIAGONAL MATRIX
C                   WITH THE ELEMENTS OF S ON ITS DIAGONAL AND THE
C                   ELEMENTS OF E ON ITS SUPER-DIAGONAL (CTRANS(U)
C                   IS THE CONJUGATE-TRANSPOSE OF U).  THUS THE
C                   SINGULAR VALUES OF X AND B ARE THE SAME.
C
C     LINPACK. THIS VERSION DATED 03/19/79 .
C              CORRECTION TO SHIFT CALCULATION MADE 2/85.
C     G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C
C     ZSVDC USES THE FOLLOWING FUNCTIONS AND SUBPROGRAMS.
C
C     EXTERNAL ZDROT
C     BLAS ZAXPY,ZDOTC,ZSCAL,ZSWAP,DZNRM2,DROTG
C     FORTRAN DABS,DMAX1,CDABS,DCMPLX
C     FORTRAN DCONJG,MAX0,MIN0,MOD,DSQRT
C
C     INTERNAL VARIABLES
C
      INTEGER I,ITER,J,JOBU,K,KASE,KK,L,LL,LLS,LM1,LP1,LS,LU,M,MAXIT,
     *        MM,MM1,MP1,NCT,NCTP1,NCU,NRT,NRTP1
      COMPLEX*16 ZDOTC,T,R
      DOUBLE PRECISION B,C,CS,EL,EMM1,F,G,DZNRM2,SCALE,SHIFT,SL,SM,SN,
     *                 SMM1,T1,TEST
*     DOUBLE PRECISION ZTEST
      LOGICAL WANTU,WANTV
C
      COMPLEX*16 CSIGN,ZDUM,ZDUM1,ZDUM2
      DOUBLE PRECISION CABS1
*
*     DECLARE EPS AND DLAMCH FOR NEW STOPPING CRITERION
      EXTERNAL DLAMCH
      DOUBLE PRECISION DLAMCH, EPS
*
      DOUBLE PRECISION DREAL,DIMAG
      COMPLEX*16 ZDUMR,ZDUMI
      DREAL(ZDUMR) = ZDUMR
      DIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI
      CABS1(ZDUM) = DABS(DREAL(ZDUM)) + DABS(DIMAG(ZDUM))
      CSIGN(ZDUM1,ZDUM2) = CDABS(ZDUM1)*(ZDUM2/CDABS(ZDUM2))
*
*     GET EPS FROM DLAMCH FOR NEW STOPPING CRITERION
      IF (N.LE.0 .OR. P.LE.0) RETURN
      EPS = DLAMCH( 'EPSILON' )
*
C
C     SET THE MAXIMUM NUMBER OF ITERATIONS.
C
      MAXIT = 50
C
C     DETERMINE WHAT IS TO BE COMPUTED.
C
      WANTU = .FALSE.
      WANTV = .FALSE.
      JOBU = MOD(JOB,100)/10
      NCU = N
      IF (JOBU .GT. 1) NCU = MIN0(N,P)
      IF (JOBU .NE. 0) WANTU = .TRUE.
      IF (MOD(JOB,10) .NE. 0) WANTV = .TRUE.
C
C     REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS
C     IN S AND THE SUPER-DIAGONAL ELEMENTS IN E.
C
*
*     INITIALIZE OP COUNT
      IOPST = 0
      INFO = 0
      NCT = MIN0(N-1,P)
      NRT = MAX0(0,MIN0(P-2,N))
      LU = MAX0(NCT,NRT)
      IF (LU .LT. 1) GO TO 170
      DO 160 L = 1, LU
         LP1 = L + 1
         IF (L .GT. NCT) GO TO 20
C
C           COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND
C           PLACE THE L-TH DIAGONAL IN S(L).
C
*
*           INCREMENT OP COUNT
            IOPS = IOPS + (4*(N-L+1)+2)
            S(L) = DCMPLX(DZNRM2(N-L+1,X(L,L),1),0.0D0)
            IF (CABS1(S(L)) .EQ. 0.0D0) GO TO 10
               IF (CABS1(X(L,L)) .NE. 0.0D0) S(L) = CSIGN(S(L),X(L,L))
*
*              INCREMENT OP COUNT
               IOPS = IOPS + (6*(N-L+1)+23)
               CALL ZSCAL(N-L+1,1.0D0/S(L),X(L,L),1)
               X(L,L) = (1.0D0,0.0D0) + X(L,L)
   10       CONTINUE
            S(L) = -S(L)
   20    CONTINUE
         IF (P .LT. LP1) GO TO 50
         DO 40 J = LP1, P
            IF (L .GT. NCT) GO TO 30
            IF (CABS1(S(L)) .EQ. 0.0D0) GO TO 30
C
C              APPLY THE TRANSFORMATION.
C
*
*              INCREMENT OP COUNT
               IOPS = IOPS + (16*(N-L)+26)
               T = -ZDOTC(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
               CALL ZAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
   30       CONTINUE
C
C           PLACE THE L-TH ROW OF X INTO  E FOR THE
C           SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION.
C
            E(J) = DCONJG(X(L,J))
   40    CONTINUE
   50    CONTINUE
         IF (.NOT.WANTU .OR. L .GT. NCT) GO TO 70
C
C           PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK
C           MULTIPLICATION.
C
            DO 60 I = L, N
               U(I,L) = X(I,L)
   60       CONTINUE
   70    CONTINUE
         IF (L .GT. NRT) GO TO 150
C
C           COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE
C           L-TH SUPER-DIAGONAL IN E(L).
C
*
*           INCREMENT OP COUNT
            IOPS = IOPS + (4*(P-L)+3)
            E(L) = DCMPLX(DZNRM2(P-L,E(LP1),1),0.0D0)
            IF (CABS1(E(L)) .EQ. 0.0D0) GO TO 80
               IF (CABS1(E(LP1)) .NE. 0.0D0) E(L) = CSIGN(E(L),E(LP1))
*
*              INCREMENT OP COUNT
               IOPS = IOPS + (6*(P-L)+23)
               CALL ZSCAL(P-L,1.0D0/E(L),E(LP1),1)
               E(LP1) = (1.0D0,0.0D0) + E(LP1)
   80       CONTINUE
            E(L) = -DCONJG(E(L))
            IF (LP1 .GT. N .OR. CABS1(E(L)) .EQ. 0.0D0) GO TO 120
C
C              APPLY THE TRANSFORMATION.
C
               DO 90 I = LP1, N
                  WORK(I) = (0.0D0,0.0D0)
   90          CONTINUE
*
*              INCREMENT OP COUNT
               IOPS = IOPS + DBLE(16*(N-L)+9)*(P-L)
               DO 100 J = LP1, P
                  CALL ZAXPY(N-L,E(J),X(LP1,J),1,WORK(LP1),1)
  100          CONTINUE
               DO 110 J = LP1, P
                  CALL ZAXPY(N-L,DCONJG(-E(J)/E(LP1)),WORK(LP1),1,
     *                       X(LP1,J),1)
  110          CONTINUE
  120       CONTINUE
            IF (.NOT.WANTV) GO TO 140
C
C              PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT
C              BACK MULTIPLICATION.
C
               DO 130 I = LP1, P
                  V(I,L) = E(I)
  130          CONTINUE
  140       CONTINUE
  150    CONTINUE
  160 CONTINUE
  170 CONTINUE
C
C     SET UP THE FINAL BIDIAGONAL MATRIX OR ORDER M.
C
      M = MIN0(P,N+1)
      NCTP1 = NCT + 1
      NRTP1 = NRT + 1
      IF (NCT .LT. P) S(NCTP1) = X(NCTP1,NCTP1)
      IF (N .LT. M) S(M) = (0.0D0,0.0D0)
      IF (NRTP1 .LT. M) E(NRTP1) = X(NRTP1,M)
      E(M) = (0.0D0,0.0D0)
C
C     IF REQUIRED, GENERATE U.
C
      IF (.NOT.WANTU) GO TO 300
         IF (NCU .LT. NCTP1) GO TO 200
         DO 190 J = NCTP1, NCU
            DO 180 I = 1, N
               U(I,J) = (0.0D0,0.0D0)
  180       CONTINUE
            U(J,J) = (1.0D0,0.0D0)
  190    CONTINUE
  200    CONTINUE
         IF (NCT .LT. 1) GO TO 290
         DO 280 LL = 1, NCT
            L = NCT - LL + 1
            IF (CABS1(S(L)) .EQ. 0.0D0) GO TO 250
               LP1 = L + 1
               IF (NCU .LT. LP1) GO TO 220
*
*              INCREMENT OP COUNT
               IOPS = IOPS + (DBLE(16*(N-L)+25)*(NCU-L)+6*(N-L)+9)
               DO 210 J = LP1, NCU
                  T = -ZDOTC(N-L+1,U(L,L),1,U(L,J),1)/U(L,L)
                  CALL ZAXPY(N-L+1,T,U(L,L),1,U(L,J),1)
  210          CONTINUE
  220          CONTINUE
               CALL ZSCAL(N-L+1,(-1.0D0,0.0D0),U(L,L),1)
               U(L,L) = (1.0D0,0.0D0) + U(L,L)
               LM1 = L - 1
               IF (LM1 .LT. 1) GO TO 240
               DO 230 I = 1, LM1
                  U(I,L) = (0.0D0,0.0D0)
  230          CONTINUE
  240          CONTINUE
            GO TO 270
  250       CONTINUE
               DO 260 I = 1, N
                  U(I,L) = (0.0D0,0.0D0)
  260          CONTINUE
               U(L,L) = (1.0D0,0.0D0)
  270       CONTINUE
  280    CONTINUE
  290    CONTINUE
  300 CONTINUE
C
C     IF IT IS REQUIRED, GENERATE V.
C
      IF (.NOT.WANTV) GO TO 350
         DO 340 LL = 1, P
            L = P - LL + 1
            LP1 = L + 1
            IF (L .GT. NRT) GO TO 320
            IF (CABS1(E(L)) .EQ. 0.0D0) GO TO 320
*
*              INCREMENT OP COUNT
               IOPS = IOPS + (DBLE(16*(P-L)+9)*(P-L)+1)
               DO 310 J = LP1, P
                  T = -ZDOTC(P-L,V(LP1,L),1,V(LP1,J),1)/V(LP1,L)
                  CALL ZAXPY(P-L,T,V(LP1,L),1,V(LP1,J),1)
  310          CONTINUE
  320       CONTINUE
            DO 330 I = 1, P
               V(I,L) = (0.0D0,0.0D0)
  330       CONTINUE
            V(L,L) = (1.0D0,0.0D0)
  340    CONTINUE
  350 CONTINUE
C
C     TRANSFORM S AND E SO THAT THEY ARE DOUBLE PRECISION.
C
*
*     INCREMENT OP COUNT
      IOPS = IOPS + (2*M-1)
      DO 380 I = 1, M
         IF (CABS1(S(I)) .EQ. 0.0D0) GO TO 360
*
*           INCREMENT OP COUNT
            IOPS = IOPS + 23
            IF (WANTU) IOPS = IOPS + 6*N
            T = DCMPLX(CDABS(S(I)),0.0D0)
            R = S(I)/T
            S(I) = T
            IF (I .LT. M) E(I) = E(I)/R
            IF (WANTU) CALL ZSCAL(N,R,U(1,I),1)
  360    CONTINUE
C     ...EXIT
         IF (I .EQ. M) GO TO 390
         IF (CABS1(E(I)) .EQ. 0.0D0) GO TO 370
*
*           INCREMENT OP COUNT
            IOPS = IOPS + 20
            IF (WANTV) IOPS = IOPS + 6*P
            T = DCMPLX(CDABS(E(I)),0.0D0)
            R = T/E(I)
            E(I) = T
            S(I+1) = S(I+1)*R
            IF (WANTV) CALL ZSCAL(P,R,V(1,I+1),1)
  370    CONTINUE
  380 CONTINUE
  390 CONTINUE
C
C     MAIN ITERATION LOOP FOR THE SINGULAR VALUES.
C
      MM = M
*
*     INITIALIZE ITERATION COUNTER
      ITCNT = 0
      ITER = 0
  400 CONTINUE
C
C        QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND.
C
C     ...EXIT
         IF (M .EQ. 0) GO TO 660
C
C        IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET
C        FLAG AND RETURN.
C
*
*        UPDATE ITERATION COUNTER
         ITCNT = ITER
         IF (ITER .LT. MAXIT) GO TO 410
            INFO = M
C     ......EXIT
            GO TO 660
  410    CONTINUE
C
C        THIS SECTION OF THE PROGRAM INSPECTS FOR
C        NEGLIGIBLE ELEMENTS IN THE S AND E ARRAYS.  ON
C        COMPLETION THE VARIABLES KASE AND L ARE SET AS FOLLOWS.
C
C           KASE = 1     IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L.LT.M
C           KASE = 2     IF S(L) IS NEGLIGIBLE AND L.LT.M
C           KASE = 3     IF E(L-1) IS NEGLIGIBLE, L.LT.M, AND
C                        S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP).
C           KASE = 4     IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).
C
         DO 430 LL = 1, M
            L = M - LL
C        ...EXIT
            IF (L .EQ. 0) GO TO 440
*
*           INCREMENT OP COUNT
            IOPST = IOPST + 17
            TEST = CDABS(S(L)) + CDABS(S(L+1))
*
*           REPLACE STOPPING CRITERION WITH NEW ONE
*
*           ZTEST = TEST + CDABS(E(L))
*           IF (ZTEST .NE. TEST) GO TO 420
            IF (CDABS(E(L)) .GT. EPS * TEST) GOTO 420
*
               E(L) = (0.0D0,0.0D0)
C        ......EXIT
               GO TO 440
  420       CONTINUE
  430    CONTINUE
  440    CONTINUE
         IF (L .NE. M - 1) GO TO 450
            KASE = 4
         GO TO 520
  450    CONTINUE
            LP1 = L + 1
            MP1 = M + 1
            DO 470 LLS = LP1, MP1
               LS = M - LLS + LP1
C           ...EXIT
               IF (LS .EQ. L) GO TO 480
               TEST = 0.0D0
*
*              INCREMENT OP COUNT
               IOPST = IOPST + 18
               IF (LS .NE. M) TEST = TEST + CDABS(E(LS))
               IF (LS .NE. L + 1) TEST = TEST + CDABS(E(LS-1))
*
*              REPLACE STOPPING CRITERION WITH NEW ONE AS IN LAPACK
*
*              ZTEST = TEST + CDABS(S(LS))
*              IF (ZTEST .NE. TEST) GO TO 460
               IF (CDABS(S(LS))  .GT. EPS * TEST) GOTO 460
*
                  S(LS) = (0.0D0,0.0D0)
C           ......EXIT
                  GO TO 480
  460          CONTINUE
  470       CONTINUE
  480       CONTINUE
            IF (LS .NE. L) GO TO 490
               KASE = 3
            GO TO 510
  490       CONTINUE
            IF (LS .NE. M) GO TO 500
               KASE = 1
            GO TO 510
  500       CONTINUE
               KASE = 2
               L = LS
  510       CONTINUE
  520    CONTINUE
         L = L + 1
C
C        PERFORM THE TASK INDICATED BY KASE.
C
         GO TO (530, 560, 580, 610), KASE
C
C        DEFLATE NEGLIGIBLE S(M).
C
  530    CONTINUE
            MM1 = M - 1
            F = DREAL(E(M-1))
            E(M-1) = (0.0D0,0.0D0)
*
*           INCREMENT OP COUNT
            IOPS = IOPS + ((MM1-L+1)*14 - 3)
            IF (WANTV) IOPS = IOPS + DBLE(MM1-L+1)*12*P
            DO 550 KK = L, MM1
               K = MM1 - KK + L
               T1 = DREAL(S(K))
               CALL DROTG(T1,F,CS,SN)
               S(K) = DCMPLX(T1,0.0D0)
               IF (K .EQ. L) GO TO 540
                  F = -SN*DREAL(E(K-1))
                  E(K-1) = CS*E(K-1)
  540          CONTINUE
               IF (WANTV) CALL ZDROT(P,V(1,K),1,V(1,M),1,CS,SN)
  550       CONTINUE
         GO TO 650
C
C        SPLIT AT NEGLIGIBLE S(L).
C
  560    CONTINUE
            F = DREAL(E(L-1))
            E(L-1) = (0.0D0,0.0D0)
*
*           INCREMENT OP COUNT
            IOPS = IOPS + (M-L+1)*14
            IF (WANTU) IOPS = IOPS + DBLE(M-L+1)*12*N
            DO 570 K = L, M
               T1 = DREAL(S(K))
               CALL DROTG(T1,F,CS,SN)
               S(K) = DCMPLX(T1,0.0D0)
               F = -SN*DREAL(E(K))
               E(K) = CS*E(K)
               IF (WANTU) CALL ZDROT(N,U(1,K),1,U(1,L-1),1,CS,SN)
  570       CONTINUE
         GO TO 650
C
C        PERFORM ONE QR STEP.
C
  580    CONTINUE
C
C           CALCULATE THE SHIFT.
C
*
*           INCREMENT OP COUNT
            IOPST = IOPST + 48
            SCALE = DMAX1(CDABS(S(M)),CDABS(S(M-1)),CDABS(E(M-1)),
     *                    CDABS(S(L)),CDABS(E(L)))
            SM = DREAL(S(M))/SCALE
            SMM1 = DREAL(S(M-1))/SCALE
            EMM1 = DREAL(E(M-1))/SCALE
            SL = DREAL(S(L))/SCALE
            EL = DREAL(E(L))/SCALE
            B = ((SMM1 + SM)*(SMM1 - SM) + EMM1**2)/2.0D0
            C = (SM*EMM1)**2
            SHIFT = 0.0D0
            IF (B .EQ. 0.0D0 .AND. C .EQ. 0.0D0) GO TO 590
               SHIFT = DSQRT(B**2+C)
               IF (B .LT. 0.0D0) SHIFT = -SHIFT
               SHIFT = C/(B + SHIFT)
  590       CONTINUE
            F = (SL + SM)*(SL - SM) + SHIFT
            G = SL*EL
C
C           CHASE ZEROS.
C
            MM1 = M - 1
*
*           INCREMENT OP COUNT
            IOPS = IOPS + (MM1-L+1)*46
            IF (WANTV) IOPS = IOPS+DBLE(MM1-L+1)*12*P
            IF (WANTU) IOPS = IOPS+DBLE(MAX((MIN(MM1,N-1)-L+1),0))*12*N
            DO 600 K = L, MM1
               CALL DROTG(F,G,CS,SN)
               IF (K .NE. L) E(K-1) = DCMPLX(F,0.0D0)
               F = CS*DREAL(S(K)) + SN*DREAL(E(K))
               E(K) = CS*E(K) - SN*S(K)
               G = SN*DREAL(S(K+1))
               S(K+1) = CS*S(K+1)
               IF (WANTV) CALL ZDROT(P,V(1,K),1,V(1,K+1),1,CS,SN)
               CALL DROTG(F,G,CS,SN)
               S(K) = DCMPLX(F,0.0D0)
               F = CS*DREAL(E(K)) + SN*DREAL(S(K+1))
               S(K+1) = -SN*E(K) + CS*S(K+1)
               G = SN*DREAL(E(K+1))
               E(K+1) = CS*E(K+1)
               IF (WANTU .AND. K .LT. N)
     *            CALL ZDROT(N,U(1,K),1,U(1,K+1),1,CS,SN)
  600       CONTINUE
            E(M-1) = DCMPLX(F,0.0D0)
            ITER = ITER + 1
         GO TO 650
C
C        CONVERGENCE.
C
  610    CONTINUE
C
C           MAKE THE SINGULAR VALUE  POSITIVE
C
            IF (DREAL(S(L)) .GE. 0.0D0) GO TO 620
               S(L) = -S(L)
*
*              INCREMENT OP COUNT
               IF (WANTV) IOPS = IOPS + 6*P
               IF (WANTV) CALL ZSCAL(P,(-1.0D0,0.0D0),V(1,L),1)
  620       CONTINUE
C
C           ORDER THE SINGULAR VALUE.
C
  630       IF (L .EQ. MM) GO TO 640
C           ...EXIT
               IF (DREAL(S(L)) .GE. DREAL(S(L+1))) GO TO 640
               T = S(L)
               S(L) = S(L+1)
               S(L+1) = T
               IF (WANTV .AND. L .LT. P)
     *            CALL ZSWAP(P,V(1,L),1,V(1,L+1),1)
               IF (WANTU .AND. L .LT. N)
     *            CALL ZSWAP(N,U(1,L),1,U(1,L+1),1)
               L = L + 1
            GO TO 630
  640       CONTINUE
            ITER = 0
            M = M - 1
  650    CONTINUE
      GO TO 400
  660 CONTINUE
*
*     COMPUTE FINAL OPCOUNT
      IOPS = IOPS + IOPST
      RETURN
      END
C
C     ------------------------------------------------------------------
C
      SUBROUTINE CQZHES(NM,N,AR,AI,BR,BI,MATZ,ZR,ZI)
C
      INTEGER I,J,K,L,N,K1,LB,L1,NM,NK1,NM1
      DOUBLE PRECISION AR(NM,N),AI(NM,N),BR(NM,N),BI(NM,N),ZR(NM,N),
     1       ZI(NM,N)
      DOUBLE PRECISION R,S,T,TI,U1,U2,XI,XR,YI,YR,RHO,U1I
CC      REAL SQRT,CABS,ABS
      LOGICAL MATZ
CC      COMPLEX*16 DCMPLX
*
*     ----------------------- BEGIN TIMING CODE ------------------------
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO OPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
      DOUBLE PRECISION   OPST
      INTEGER            IOPST
*     ------------------------ END TIMING CODE -------------------------
*
C
C     THIS SUBROUTINE IS A COMPLEX ANALOGUE OF THE FIRST STEP OF THE
C     QZ ALGORITHM FOR SOLVING GENERALIZED MATRIX EIGENVALUE PROBLEMS,
C     SIAM J. NUMER. ANAL. 10, 241-256(1973) BY MOLER AND STEWART.
C
C     THIS SUBROUTINE ACCEPTS A PAIR OF COMPLEX GENERAL MATRICES AND
C     REDUCES ONE OF THEM TO UPPER HESSENBERG FORM WITH REAL (AND NON-
C     NEGATIVE) SUBDIAGONAL ELEMENTS AND THE OTHER TO UPPER TRIANGULAR
C     FORM USING UNITARY TRANSFORMATIONS.  IT IS USUALLY FOLLOWED BY
C     CQZVAL  AND POSSIBLY  CQZVEC.
C
C     ON INPUT-
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT,
C
C        N IS THE ORDER OF THE MATRICES,
C
C        A=(AR,AI) CONTAINS A COMPLEX GENERAL MATRIX,
C
C        B=(BR,BI) CONTAINS A COMPLEX GENERAL MATRIX,
C
C        MATZ SHOULD BE SET TO .TRUE. IF THE RIGHT HAND TRANSFORMATIONS
C          ARE TO BE ACCUMULATED FOR LATER USE IN COMPUTING
C          EIGENVECTORS, AND TO .FALSE. OTHERWISE.
C
C     ON OUTPUT-
C
C        A HAS BEEN REDUCED TO UPPER HESSENBERG FORM.  THE ELEMENTS
C          BELOW THE FIRST SUBDIAGONAL HAVE BEEN SET TO ZERO, AND THE
C          SUBDIAGONAL ELEMENTS HAVE BEEN MADE REAL (AND NON-NEGATIVE),
C
C        B HAS BEEN REDUCED TO UPPER TRIANGULAR FORM.  THE ELEMENTS
C          BELOW THE MAIN DIAGONAL HAVE BEEN SET TO ZERO,
C
C        Z=(ZR,ZI) CONTAINS THE PRODUCT OF THE RIGHT HAND
C          TRANSFORMATIONS IF MATZ HAS BEEN SET TO .TRUE.
C          OTHERWISE, Z IS NOT REFERENCED.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
C     ********** INITIALIZE Z **********
      IF (.NOT. MATZ) GO TO 10
C
      DO 3 I = 1, N
C
         DO 2 J = 1, N
            ZR(I,J) = 0.0D0
            ZI(I,J) = 0.0D0
    2    CONTINUE
C
         ZR(I,I) = 1.0D0
    3 CONTINUE
C     ********** REDUCE B TO UPPER TRIANGULAR FORM WITH
C                TEMPORARILY REAL DIAGONAL ELEMENTS **********
   10 IF (N .LE. 1) GO TO 170
      NM1 = N - 1
C
      DO 100 L = 1, NM1
*        ---------------------- BEGIN TIMING CODE ----------------------
         IOPST = 0
*        ----------------------- END TIMING CODE -----------------------
         L1 = L + 1
         S = 0.0D0
C
         DO 20 I = L, N
            S = S + ABS(BR(I,L)) + ABS(BI(I,L))
   20    CONTINUE
*        ---------------------- BEGIN TIMING CODE ----------------------
         IOPST = IOPST + 2*( N+1-L )
*        ----------------------- END TIMING CODE -----------------------
C
         IF (S .EQ. 0.0D0) GO TO 100
         RHO = 0.0D0
C
         DO 25 I = L, N
            BR(I,L) = BR(I,L) / S
            BI(I,L) = BI(I,L) / S
            RHO = RHO + BR(I,L)**2 + BI(I,L)**2
   25    CONTINUE
C
         R = SQRT(RHO)
         XR = ABS(DCMPLX(BR(L,L),BI(L,L)))
         IF (XR .EQ. 0.0D0) GO TO 27
*        ---------------------- BEGIN TIMING CODE ----------------------
         IOPST = IOPST + 8
*        ----------------------- END TIMING CODE -----------------------
         RHO = RHO + XR * R
         U1 = -BR(L,L) / XR
         U1I = -BI(L,L) / XR
         YR = R / XR + 1.0D0
         BR(L,L) = YR * BR(L,L)
         BI(L,L) = YR * BI(L,L)
         GO TO 28
C
   27    BR(L,L) = R
         U1 = -1.0D0
         U1I = 0.0D0
C
   28    DO 50 J = L1, N
            T = 0.0D0
            TI = 0.0D0
C
            DO 30 I = L, N
               T = T + BR(I,L) * BR(I,J) + BI(I,L) * BI(I,J)
               TI = TI + BR(I,L) * BI(I,J) - BI(I,L) * BR(I,J)
   30       CONTINUE
C
            T = T / RHO
            TI = TI / RHO
C
            DO 40 I = L, N
               BR(I,J) = BR(I,J) - T * BR(I,L) + TI * BI(I,L)
               BI(I,J) = BI(I,J) - T * BI(I,L) - TI * BR(I,L)
   40       CONTINUE
C
            XI = U1 * BI(L,J) - U1I * BR(L,J)
            BR(L,J) = U1 * BR(L,J) + U1I * BI(L,J)
            BI(L,J) = XI
   50    CONTINUE
C
         DO 80 J = 1, N
            T = 0.0D0
            TI = 0.0D0
C
            DO 60 I = L, N
               T = T + BR(I,L) * AR(I,J) + BI(I,L) * AI(I,J)
               TI = TI + BR(I,L) * AI(I,J) - BI(I,L) * AR(I,J)
   60       CONTINUE
C
            T = T / RHO
            TI = TI / RHO
C
            DO 70 I = L, N
               AR(I,J) = AR(I,J) - T * BR(I,L) + TI * BI(I,L)
               AI(I,J) = AI(I,J) - T * BI(I,L) - TI * BR(I,L)
   70       CONTINUE
C
            XI = U1 * AI(L,J) - U1I * AR(L,J)
            AR(L,J) = U1 * AR(L,J) + U1I * AI(L,J)
            AI(L,J) = XI
   80    CONTINUE
C
         BR(L,L) = R * S
         BI(L,L) = 0.0D0
C
         DO 90 I = L1, N
            BR(I,L) = 0.0D0
            BI(I,L) = 0.0D0
   90    CONTINUE
*        ---------------------- BEGIN TIMING CODE ----------------------
         OPS = OPS + ( DBLE( 16*( N-L ) + 16*N + 30 )*DBLE( N-L ) +
     $                 DBLE( 24*N + 13 + IOPST ) )
*        ----------------------- END TIMING CODE -----------------------
C
  100 CONTINUE
C     ********** REDUCE A TO UPPER HESSENBERG FORM WITH REAL SUBDIAGONAL
C                ELEMENTS, WHILE KEEPING B TRIANGULAR **********
      DO 160 K = 1, NM1
*        ---------------------- BEGIN TIMING CODE ----------------------
         OPST = 0.0D0
*        ----------------------- END TIMING CODE -----------------------
         K1 = K + 1
C     ********** SET BOTTOM ELEMENT IN K-TH COLUMN OF A REAL **********
         IF (AI(N,K) .EQ. 0.0D0) GO TO 105
         R = ABS(DCMPLX(AR(N,K),AI(N,K)))
         U1 = AR(N,K) / R
         U1I = AI(N,K) / R
         AR(N,K) = R
         AI(N,K) = 0.0D0
C
         DO 103 J = K1, N
            XI = U1 * AI(N,J) - U1I * AR(N,J)
            AR(N,J) = U1 * AR(N,J) + U1I * AI(N,J)
            AI(N,J) = XI
  103    CONTINUE
C
         XI = U1 * BI(N,N) - U1I * BR(N,N)
         BR(N,N) = U1 * BR(N,N) + U1I * BI(N,N)
         BI(N,N) = XI
*        ---------------------- BEGIN TIMING CODE ----------------------
         OPST = OPST + DBLE( 18 + 6*( N-K ) )
*        ----------------------- END TIMING CODE -----------------------
  105    IF (K .EQ. NM1) GO TO 170
         NK1 = NM1 - K
C     ********** FOR L=N-1 STEP -1 UNTIL K+1 DO -- **********
         DO 150 LB = 1, NK1
            L = N - LB
            L1 = L + 1
C     ********** ZERO A(L+1,K) **********
            S = ABS(AR(L,K)) + ABS(AI(L,K)) + AR(L1,K)
            IF (S .EQ. 0.0D0) GO TO 150
*           -------------------- BEGIN TIMING CODE ---------------------
            OPST = OPST + DBLE( 18 + 20*( 2*N-K-L ) )
*           --------------------- END TIMING CODE ----------------------
            U1 = AR(L,K) / S
            U1I = AI(L,K) / S
            U2 = AR(L1,K) / S
            R = SQRT(U1*U1+U1I*U1I+U2*U2)
            U1 = U1 / R
            U1I = U1I / R
            U2 = U2 / R
            AR(L,K) = R * S
            AI(L,K) = 0.0D0
            AR(L1,K) = 0.0D0
C
            DO 110 J = K1, N
               XR = AR(L,J)
               XI = AI(L,J)
               YR = AR(L1,J)
               YI = AI(L1,J)
               AR(L,J) = U1 * XR + U1I * XI + U2 * YR
               AI(L,J) = U1 * XI - U1I * XR + U2 * YI
               AR(L1,J) = U1 * YR - U1I * YI - U2 * XR
               AI(L1,J) = U1 * YI + U1I * YR - U2 * XI
  110       CONTINUE
C
            XR = BR(L,L)
            BR(L,L) = U1 * XR
            BI(L,L) = -U1I * XR
            BR(L1,L) = -U2 * XR
C
            DO 120 J = L1, N
               XR = BR(L,J)
               XI = BI(L,J)
               YR = BR(L1,J)
               YI = BI(L1,J)
               BR(L,J) = U1 * XR + U1I * XI + U2 * YR
               BI(L,J) = U1 * XI - U1I * XR + U2 * YI
               BR(L1,J) = U1 * YR - U1I * YI - U2 * XR
               BI(L1,J) = U1 * YI + U1I * YR - U2 * XI
  120       CONTINUE
C     ********** ZERO B(L+1,L) **********
            S = ABS(BR(L1,L1)) + ABS(BI(L1,L1)) + ABS(BR(L1,L))
            IF (S .EQ. 0.0D0) GO TO 150
*           -------------------- BEGIN TIMING CODE ---------------------
            OPST = OPST + DBLE( 13 + 20*( N+L ) )
*           --------------------- END TIMING CODE ----------------------
            U1 = BR(L1,L1) / S
            U1I = BI(L1,L1) / S
            U2 = BR(L1,L) / S
            R = SQRT(U1*U1+U1I*U1I+U2*U2)
            U1 = U1 / R
            U1I = U1I / R
            U2 = U2 / R
            BR(L1,L1) = R * S
            BI(L1,L1) = 0.0D0
            BR(L1,L) = 0.0D0
C
            DO 130 I = 1, L
               XR = BR(I,L1)
               XI = BI(I,L1)
               YR = BR(I,L)
               YI = BI(I,L)
               BR(I,L1) = U1 * XR + U1I * XI + U2 * YR
               BI(I,L1) = U1 * XI - U1I * XR + U2 * YI
               BR(I,L) = U1 * YR - U1I * YI - U2 * XR
               BI(I,L) = U1 * YI + U1I * YR - U2 * XI
  130       CONTINUE
C
            DO 140 I = 1, N
               XR = AR(I,L1)
               XI = AI(I,L1)
               YR = AR(I,L)
               YI = AI(I,L)
               AR(I,L1) = U1 * XR + U1I * XI + U2 * YR
               AI(I,L1) = U1 * XI - U1I * XR + U2 * YI
               AR(I,L) = U1 * YR - U1I * YI - U2 * XR
               AI(I,L) = U1 * YI + U1I * YR - U2 * XI
  140       CONTINUE
C
            IF (.NOT. MATZ) GO TO 150
*           -------------------- BEGIN TIMING CODE ---------------------
            OPST = OPST + 20*N
*           --------------------- END TIMING CODE ----------------------
C
            DO 145 I = 1, N
               XR = ZR(I,L1)
               XI = ZI(I,L1)
               YR = ZR(I,L)
               YI = ZI(I,L)
               ZR(I,L1) = U1 * XR + U1I * XI + U2 * YR
               ZI(I,L1) = U1 * XI - U1I * XR + U2 * YI
               ZR(I,L) = U1 * YR - U1I * YI - U2 * XR
               ZI(I,L) = U1 * YI + U1I * YR - U2 * XI
  145       CONTINUE
C
  150    CONTINUE
*        ---------------------- BEGIN TIMING CODE ----------------------
         OPS = OPS + ( OPST + DBLE( 2*( N-1-K ) ) )
*        ----------------------- END TIMING CODE -----------------------
C
  160 CONTINUE
C
  170 RETURN
C     ********** LAST CARD OF CQZHES **********
      END
      SUBROUTINE CQZVAL(NM,N,AR,AI,BR,BI,EPS1,ALFR,ALFI,BETA,
     X                                       MATZ,ZR,ZI,IERR)
C
      INTEGER I,J,K,L,N,EN,K1,K2,LL,L1,NA,NM,ITS,KM1,LM1,
     X        ENM2,IERR,LOR1,ENORN
      DOUBLE PRECISION AR(NM,N),AI(NM,N),BR(NM,N),BI(NM,N),ALFR(N),
     X       ALFI(N),BETA(N),ZR(NM,N),ZI(NM,N)
      DOUBLE PRECISION R,S,A1,A2,EP,SH,U1,U2,XI,XR,YI,YR,ANI,A1I,A33,
     X       A34,A43,A44,BNI,B11,B33,B44,SHI,U1I,A33I,A34I,A43I,A44I,
     X       B33I,B44I,EPSA,EPSB,EPS1,ANORM,BNORM,B3344,B3344I
CC      REAL SQRT,CSQRT,ABS
      INTEGER MAX0
      LOGICAL MATZ
      DOUBLE COMPLEX Z3
CC      COMPLEX CSQRT,DCMPLX
CC      REAL REAL,AIMAG
*
*     ----------------------- BEGIN TIMING CODE ------------------------
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO OPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
      DOUBLE PRECISION   OPST
      INTEGER            IOPST
*     ------------------------ END TIMING CODE -------------------------
*
C
C
C
C
C
C     THIS SUBROUTINE IS A COMPLEX ANALOGUE OF STEPS 2 AND 3 OF THE
C     QZ ALGORITHM FOR SOLVING GENERALIZED MATRIX EIGENVALUE PROBLEMS,
C     SIAM J. NUMER. ANAL. 10, 241-256(1973) BY MOLER AND STEWART,
C     AS MODIFIED IN TECHNICAL NOTE NASA TN E-7305(1973) BY WARD.
C
C     THIS SUBROUTINE ACCEPTS A PAIR OF COMPLEX MATRICES, ONE OF THEM
C     IN UPPER HESSENBERG FORM AND THE OTHER IN UPPER TRIANGULAR FORM,
C     THE HESSENBERG MATRIX MUST FURTHER HAVE REAL SUBDIAGONAL ELEMENTS.
C     IT REDUCES THE HESSENBERG MATRIX TO TRIANGULAR FORM USING
C     UNITARY TRANSFORMATIONS WHILE MAINTAINING THE TRIANGULAR FORM
C     OF THE OTHER MATRIX AND FURTHER MAKING ITS DIAGONAL ELEMENTS
C     REAL AND NON-NEGATIVE.  IT THEN RETURNS QUANTITIES WHOSE RATIOS
C     GIVE THE GENERALIZED EIGENVALUES.  IT IS USUALLY PRECEDED BY
C     CQZHES  AND POSSIBLY FOLLOWED BY  CQZVEC.
C
C     ON INPUT-
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT,
C
C        N IS THE ORDER OF THE MATRICES,
C
C        A=(AR,AI) CONTAINS A COMPLEX UPPER HESSENBERG MATRIX
C          WITH REAL SUBDIAGONAL ELEMENTS,
C
C        B=(BR,BI) CONTAINS A COMPLEX UPPER TRIANGULAR MATRIX,
C
C        EPS1 IS A TOLERANCE USED TO DETERMINE NEGLIGIBLE ELEMENTS.
C          EPS1 = 0.0 (OR NEGATIVE) MAY BE INPUT, IN WHICH CASE AN
C          ELEMENT WILL BE NEGLECTED ONLY IF IT IS LESS THAN ROUNDOFF
C          ERROR TIMES THE NORM OF ITS MATRIX.  IF THE INPUT EPS1 IS
C          POSITIVE, THEN AN ELEMENT WILL BE CONSIDERED NEGLIGIBLE
C          IF IT IS LESS THAN EPS1 TIMES THE NORM OF ITS MATRIX.  A
C          POSITIVE VALUE OF EPS1 MAY RESULT IN FASTER EXECUTION,
C          BUT LESS ACCURATE RESULTS,
C
C        MATZ SHOULD BE SET TO .TRUE. IF THE RIGHT HAND TRANSFORMATIONS
C          ARE TO BE ACCUMULATED FOR LATER USE IN COMPUTING
C          EIGENVECTORS, AND TO .FALSE. OTHERWISE,
C
C        Z=(ZR,ZI) CONTAINS, IF MATZ HAS BEEN SET TO .TRUE., THE
C          TRANSFORMATION MATRIX PRODUCED IN THE REDUCTION
C          BY  CQZHES, IF PERFORMED, OR ELSE THE IDENTITY MATRIX.
C          IF MATZ HAS BEEN SET TO .FALSE., Z IS NOT REFERENCED.
C
C     ON OUTPUT-
C
C        A HAS BEEN REDUCED TO UPPER TRIANGULAR FORM.  THE ELEMENTS
C          BELOW THE MAIN DIAGONAL HAVE BEEN SET TO ZERO,
C
C        B IS STILL IN UPPER TRIANGULAR FORM, ALTHOUGH ITS ELEMENTS
C          HAVE BEEN ALTERED.  IN PARTICULAR, ITS DIAGONAL HAS BEEN SET
C          REAL AND NON-NEGATIVE.  THE LOCATION BR(N,1) IS USED TO
C          STORE EPS1 TIMES THE NORM OF B FOR LATER USE BY  CQZVEC,
C
C        ALFR AND ALFI CONTAIN THE REAL AND IMAGINARY PARTS OF THE
C          DIAGONAL ELEMENTS OF THE TRIANGULARIZED A MATRIX,
C
C        BETA CONTAINS THE REAL NON-NEGATIVE DIAGONAL ELEMENTS OF THE
C          CORRESPONDING B.  THE GENERALIZED EIGENVALUES ARE THEN
C          THE RATIOS ((ALFR+I*ALFI)/BETA),
C
C        Z CONTAINS THE PRODUCT OF THE RIGHT HAND TRANSFORMATIONS
C          (FOR BOTH STEPS) IF MATZ HAS BEEN SET TO .TRUE.,
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF AR(J,J-1) HAS NOT BECOME
C                     ZERO AFTER 50 ITERATIONS.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
      IERR = 0
C     ********** COMPUTE EPSA,EPSB **********
      ANORM = 0.0D0
      BNORM = 0.0D0
C
      DO 30 I = 1, N
         ANI = 0.0D0
         IF (I .NE. 1) ANI = ABS(AR(I,I-1))
         BNI = 0.0D0
C
         DO 20 J = I, N
            ANI = ANI + ABS(AR(I,J)) + ABS(AI(I,J))
            BNI = BNI + ABS(BR(I,J)) + ABS(BI(I,J))
   20    CONTINUE
C
         IF (ANI .GT. ANORM) ANORM = ANI
         IF (BNI .GT. BNORM) BNORM = BNI
   30 CONTINUE
C
      IF (ANORM .EQ. 0.0D0) ANORM = 1.0D0
      IF (BNORM .EQ. 0.0D0) BNORM = 1.0D0
      EP = EPS1
      IF (EP .GT. 0.0D0) GO TO 50
C     ********** COMPUTE ROUNDOFF LEVEL IF EPS1 IS ZERO **********
      EP = 1.0D0
   40 EP = EP / 2.0D0
      IF (1.0D0 + EP .GT. 1.0D0) GO TO 40
   50 EPSA = EP * ANORM
      EPSB = EP * BNORM
*     ----------------------- BEGIN TIMING CODE ------------------------
*     COUNT OPS FOR NORMS, BUT NOT FOR CALCULATION OF "EP"
      OPS = OPS + DBLE( 2*N*( N+1 ) + 2 )
      OPST = 0.0D0
      ITCNT = 0.0D0
*     ------------------------ END TIMING CODE -------------------------
C     ********** REDUCE A TO TRIANGULAR FORM, WHILE
C                KEEPING B TRIANGULAR **********
      LOR1 = 1
      ENORN = N
      EN = N
C     ********** BEGIN QZ STEP **********
   60 IF (EN .EQ. 0) GO TO 1001
      IF (.NOT. MATZ) ENORN = EN
      ITS = 0
      NA = EN - 1
      ENM2 = NA - 1
C     ********** CHECK FOR CONVERGENCE OR REDUCIBILITY.
C                FOR L=EN STEP -1 UNTIL 1 DO -- **********
   70 CONTINUE
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPS = OPS + OPST
      OPST = 0.0D0
*     ------------------------ END TIMING CODE -------------------------
      DO 80 LL = 1, EN
         LM1 = EN - LL
         L = LM1 + 1
         IF (L .EQ. 1) GO TO 95
         IF (ABS(AR(L,LM1)) .LE. EPSA) GO TO 90
   80 CONTINUE
C
   90 AR(L,LM1) = 0.0D0
C     ********** SET DIAGONAL ELEMENT AT TOP OF B REAL **********
   95 B11 = ABS(DCMPLX(BR(L,L),BI(L,L)))
      IF (B11     .EQ. 0.0D0) GO TO 98
      U1 = BR(L,L) / B11
      U1I = BI(L,L) / B11
C
      DO 97 J = L, ENORN
         XI = U1 * AI(L,J) - U1I * AR(L,J)
         AR(L,J) = U1 * AR(L,J) + U1I * AI(L,J)
         AI(L,J) = XI
         XI = U1 * BI(L,J) - U1I * BR(L,J)
         BR(L,J) = U1 * BR(L,J) + U1I * BI(L,J)
         BI(L,J) = XI
   97 CONTINUE
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPST = OPST + DBLE( 7 + 12*( ENORN+1-L ) )
*     ------------------------ END TIMING CODE -------------------------
C
      BI(L,L) = 0.0D0
   98 IF (L .NE. EN) GO TO 100
C     ********** 1-BY-1 BLOCK ISOLATED **********
      ALFR(EN) = AR(EN,EN)
      ALFI(EN) = AI(EN,EN)
      BETA(EN) = B11
      EN = NA
      GO TO 60
C     ********** CHECK FOR SMALL TOP OF B **********
  100 L1 = L + 1
      IF (B11 .GT. EPSB) GO TO 120
      BR(L,L) = 0.0D0
      S = ABS(AR(L,L)) + ABS(AI(L,L)) + ABS(AR(L1,L))
      U1 = AR(L,L) / S
      U1I = AI(L,L) / S
      U2 = AR(L1,L) / S
      R = SQRT(U1*U1+U1I*U1I+U2*U2)
      U1 = U1 / R
      U1I = U1I / R
      U2 = U2 / R
      AR(L,L) = R * S
      AI(L,L) = 0.0D0
C
      DO 110 J = L1, ENORN
         XR = AR(L,J)
         XI = AI(L,J)
         YR = AR(L1,J)
         YI = AI(L1,J)
         AR(L,J) = U1 * XR + U1I * XI + U2 * YR
         AI(L,J) = U1 * XI - U1I * XR + U2 * YI
         AR(L1,J) = U1 * YR - U1I * YI - U2 * XR
         AI(L1,J) = U1 * YI + U1I * YR - U2 * XI
         XR = BR(L,J)
         XI = BI(L,J)
         YR = BR(L1,J)
         YI = BI(L1,J)
         BR(L1,J) = U1 * YR - U1I * YI - U2 * XR
         BR(L,J) = U1 * XR + U1I * XI + U2 * YR
         BI(L,J) = U1 * XI - U1I * XR + U2 * YI
         BI(L1,J) = U1 * YI + U1I * YR - U2 * XI
  110 CONTINUE
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPST = OPST + DBLE( 15 + 40*( ENORN-L ) )
*     ------------------------ END TIMING CODE -------------------------
C
      LM1 = L
      L = L1
      GO TO 90
C     ********** ITERATION STRATEGY **********
  120 IF (ITS .EQ. 50) GO TO 1000
      IF (ITS .EQ. 10) GO TO 135
C     ********** DETERMINE SHIFT **********
      B33 = BR(NA,NA)
      B33I = BI(NA,NA)
      IF (ABS(DCMPLX(B33,B33I)) .GE. EPSB) GO TO 122
      B33 = EPSB
      B33I = 0.0D0
  122 B44 = BR(EN,EN)
      B44I = BI(EN,EN)
      IF (ABS(DCMPLX(B44,B44I)) .GE. EPSB) GO TO 124
      B44 = EPSB
      B44I = 0.0D0
  124 B3344 = B33 * B44 - B33I * B44I
      B3344I = B33 * B44I + B33I * B44
      A33 = AR(NA,NA) * B44 - AI(NA,NA) * B44I
      A33I = AR(NA,NA) * B44I + AI(NA,NA) * B44
      A34 = AR(NA,EN) * B33 - AI(NA,EN) * B33I
     X    - AR(NA,NA) * BR(NA,EN) + AI(NA,NA) * BI(NA,EN)
      A34I = AR(NA,EN) * B33I + AI(NA,EN) * B33
     X     - AR(NA,NA) * BI(NA,EN) - AI(NA,NA) * BR(NA,EN)
      A43 = AR(EN,NA) * B44
      A43I = AR(EN,NA) * B44I
      A44 = AR(EN,EN) * B33 - AI(EN,EN) * B33I - AR(EN,NA) * BR(NA,EN)
      A44I = AR(EN,EN) * B33I + AI(EN,EN) * B33 - AR(EN,NA) * BI(NA,EN)
      SH = A44
      SHI = A44I
      XR = A34 * A43 - A34I * A43I
      XI = A34 * A43I + A34I * A43
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPST = OPST + DBLE( 54 )
*     ------------------------ END TIMING CODE -------------------------
      IF (XR .EQ. 0.0D0 .AND. XI .EQ. 0.0D0) GO TO 140
      YR = (A33 - SH) / 2.0D0
      YI = (A33I - SHI) / 2.0D0
      Z3 = SQRT(DCMPLX(YR**2-YI**2+XR,2.0D0*YR*YI+XI))
      U1 = DBLE(Z3)
      U1I = DIMAG(Z3)
      IF (YR * U1 + YI * U1I .GE. 0.0D0) GO TO 125
      U1 = -U1
      U1I = -U1I
  125 Z3 = (DCMPLX(SH,SHI) - DCMPLX(XR,XI) / DCMPLX(YR+U1,YI+U1I))
     X   / DCMPLX(B3344,B3344I)
      SH = DBLE(Z3)
      SHI = DIMAG(Z3)
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPST = OPST + DBLE( 66 )
*     ------------------------ END TIMING CODE -------------------------
      GO TO 140
C     ********** AD HOC SHIFT **********
  135 SH = AR(EN,NA) + AR(NA,ENM2)
      SHI = 0.0D0
C     ********** DETERMINE ZEROTH COLUMN OF A **********
  140 A1 = AR(L,L) / B11 - SH
      A1I = AI(L,L) / B11 - SHI
      A2 = AR(L1,L) / B11
      ITS = ITS + 1
*     ----------------------- BEGIN TIMING CODE ------------------------
      ITCNT = ITCNT + 1.0D0
*     ------------------------ END TIMING CODE -------------------------
      IF (.NOT. MATZ) LOR1 = L
C     ********** MAIN LOOP **********
      DO 260 K = L, NA
         K1 = K + 1
         K2 = K + 2
         KM1 = MAX0(K-1,L)
C     ********** ZERO A(K+1,K-1) **********
         IF (K .EQ. L) GO TO 170
         A1 = AR(K,KM1)
         A1I = AI(K,KM1)
         A2 = AR(K1,KM1)
  170    S = ABS(A1) + ABS(A1I) + ABS(A2)
         U1 = A1 / S
         U1I = A1I / S
         U2 = A2 / S
         R = SQRT(U1*U1+U1I*U1I+U2*U2)
         U1 = U1 / R
         U1I = U1I / R
         U2 = U2 / R
C
         DO 180 J = KM1, ENORN
            XR = AR(K,J)
            XI = AI(K,J)
            YR = AR(K1,J)
            YI = AI(K1,J)
            AR(K,J) = U1 * XR + U1I * XI + U2 * YR
            AI(K,J) = U1 * XI - U1I * XR + U2 * YI
            AR(K1,J) = U1 * YR - U1I * YI - U2 * XR
            AI(K1,J) = U1 * YI + U1I * YR - U2 * XI
            XR = BR(K,J)
            XI = BI(K,J)
            YR = BR(K1,J)
            YI = BI(K1,J)
            BR(K,J) = U1 * XR + U1I * XI + U2 * YR
            BI(K,J) = U1 * XI - U1I * XR + U2 * YI
            BR(K1,J) = U1 * YR - U1I * YI - U2 * XR
            BI(K1,J) = U1 * YI + U1I * YR - U2 * XI
  180    CONTINUE
C
         IF (K .EQ. L) GO TO 240
         AI(K,KM1) = 0.0D0
         AR(K1,KM1) = 0.0D0
         AI(K1,KM1) = 0.0D0
C     ********** ZERO B(K+1,K) **********
  240    S = ABS(BR(K1,K1)) + ABS(BI(K1,K1)) + ABS(BR(K1,K))
         U1 = BR(K1,K1) / S
         U1I = BI(K1,K1) / S
         U2 = BR(K1,K) / S
         R = SQRT(U1*U1+U1I*U1I+U2*U2)
         U1 = U1 / R
         U1I = U1I / R
         U2 = U2 / R
         IF (K .EQ. NA) GO TO 245
         XR = AR(K2,K1)
         AR(K2,K1) = U1 * XR
         AI(K2,K1) = -U1I * XR
         AR(K2,K) = -U2 * XR
C
  245    DO 250 I = LOR1, K1
            XR = AR(I,K1)
            XI = AI(I,K1)
            YR = AR(I,K)
            YI = AI(I,K)
            AR(I,K1) = U1 * XR + U1I * XI + U2 * YR
            AI(I,K1) = U1 * XI - U1I * XR + U2 * YI
            AR(I,K) = U1 * YR - U1I * YI - U2 * XR
            AI(I,K) = U1 * YI + U1I * YR - U2 * XI
            XR = BR(I,K1)
            XI = BI(I,K1)
            YR = BR(I,K)
            YI = BI(I,K)
            BR(I,K1) = U1 * XR + U1I * XI + U2 * YR
            BI(I,K1) = U1 * XI - U1I * XR + U2 * YI
            BR(I,K) = U1 * YR - U1I * YI - U2 * XR
            BI(I,K) = U1 * YI + U1I * YR - U2 * XI
  250    CONTINUE
C
         BI(K1,K1) = 0.0D0
         BR(K1,K) = 0.0D0
         BI(K1,K) = 0.0D0
         IF (.NOT. MATZ) GO TO 260
C
         DO 255 I = 1, N
            XR = ZR(I,K1)
            XI = ZI(I,K1)
            YR = ZR(I,K)
            YI = ZI(I,K)
            ZR(I,K1) = U1 * XR + U1I * XI + U2 * YR
            ZI(I,K1) = U1 * XI - U1I * XR + U2 * YI
            ZR(I,K) = U1 * YR - U1I * YI - U2 * XR
            ZI(I,K) = U1 * YI + U1I * YR - U2 * XI
  255    CONTINUE
C
  260 CONTINUE
*
*     ----------------------- BEGIN TIMING CODE ------------------------
*     COUNT OPS FOR STATEMENTS 140 -- 260
      IOPST = 29 + 40*( ENORN-LOR1+4 )
      IF( MATZ ) IOPST = IOPST + 20*N
      OPST = OPST + ( DBLE( N-L )*DBLE( IOPST ) + 2 )
      IF( L.LE.1 ) OPST = OPST - 40
*     ------------------------ END TIMING CODE -------------------------
*
C     ********** SET LAST A SUBDIAGONAL REAL AND END QZ STEP **********
      IF (AI(EN,NA) .EQ. 0.0D0) GO TO 70
      R = ABS(DCMPLX(AR(EN,NA),AI(EN,NA)))
      U1 = AR(EN,NA) / R
      U1I = AI(EN,NA) / R
      AR(EN,NA) = R
      AI(EN,NA) = 0.0D0
C
      DO 270 J = EN, ENORN
         XI = U1 * AI(EN,J) - U1I * AR(EN,J)
         AR(EN,J) = U1 * AR(EN,J) + U1I * AI(EN,J)
         AI(EN,J) = XI
         XI = U1 * BI(EN,J) - U1I * BR(EN,J)
         BR(EN,J) = U1 * BR(EN,J) + U1I * BI(EN,J)
         BI(EN,J) = XI
  270 CONTINUE
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPST = OPST + DBLE( 7 + 12*( EN+1-ENORN ) )
*     ------------------------ END TIMING CODE -------------------------
C
      GO TO 70
C     ********** SET ERROR -- BOTTOM SUBDIAGONAL ELEMENT HAS NOT
C                BECOME NEGLIGIBLE AFTER 50 ITERATIONS **********
 1000 IERR = EN
C     ********** SAVE EPSB FOR USE BY CQZVEC **********
 1001 IF (N .GT. 1) BR(N,1) = EPSB
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPS = OPS + OPST
      OPST = 0.0D0
*     ------------------------ END TIMING CODE -------------------------
      RETURN
C     ********** LAST CARD OF CQZVAL **********
      END
      SUBROUTINE CQZVEC(NM,N,AR,AI,BR,BI,ALFR,ALFI,BETA,ZR,ZI)
C
      INTEGER I,J,K,M,N,EN,II,JJ,NA,NM,NN
      DOUBLE PRECISION AR(NM,N),AI(NM,N),BR(NM,N),BI(NM,N),ALFR(N),
     X       ALFI(N),BETA(N),ZR(NM,N),ZI(NM,N)
      DOUBLE PRECISION R,T,RI,TI,XI,ALMI,ALMR,BETM,EPSB
CC      REAL CABS
      DOUBLE COMPLEX Z3
CC      COMPLEX CMPLX
CC      REAL REAL,AIMAG
C
C
*
*     ----------------------- BEGIN TIMING CODE ------------------------
*     COMMON BLOCK TO RETURN OPERATION COUNT AND ITERATION COUNT
*     ITCNT IS INITIALIZED TO 0, OPS IS ONLY INCREMENTED
*     OPST IS USED TO ACCUMULATE SMALL CONTRIBUTIONS TO OPS
*     TO AVOID ROUNDOFF ERROR
*     .. COMMON BLOCKS ..
      COMMON             / LATIME / OPS, ITCNT
*     ..
*     .. SCALARS IN COMMON ..
      DOUBLE PRECISION   ITCNT, OPS
*     ..
*     ------------------------ END TIMING CODE -------------------------
*
C
C
C
C     THIS SUBROUTINE IS A COMPLEX ANALOGUE OF THE FOURTH STEP OF THE
C     QZ ALGORITHM FOR SOLVING GENERALIZED MATRIX EIGENVALUE PROBLEMS,
C     SIAM J. NUMER. ANAL. 10, 241-256(1973) BY MOLER AND STEWART.
C
C     THIS SUBROUTINE ACCEPTS A PAIR OF COMPLEX MATRICES IN UPPER
C     TRIANGULAR FORM, WHERE ONE OF THEM FURTHER MUST HAVE REAL DIAGONAL
C     ELEMENTS.  IT COMPUTES THE EIGENVECTORS OF THE TRIANGULAR PROBLEM
C     AND TRANSFORMS THE RESULTS BACK TO THE ORIGINAL COORDINATE SYSTEM.
C     IT IS USUALLY PRECEDED BY  CQZHES  AND  CQZVAL.
C
C     ON INPUT-
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT,
C
C        N IS THE ORDER OF THE MATRICES,
C
C        A=(AR,AI) CONTAINS A COMPLEX UPPER TRIANGULAR MATRIX,
C
C        B=(BR,BI) CONTAINS A COMPLEX UPPER TRIANGULAR MATRIX WITH REAL
C          DIAGONAL ELEMENTS.  IN ADDITION, LOCATION BR(N,1) CONTAINS
C          THE TOLERANCE QUANTITY (EPSB) COMPUTED AND SAVED IN  CQZVAL,
C
C        ALFR, ALFI, AND BETA ARE VECTORS WITH COMPONENTS WHOSE
C          RATIOS ((ALFR+I*ALFI)/BETA) ARE THE GENERALIZED
C          EIGENVALUES.  THEY ARE USUALLY OBTAINED FROM  CQZVAL,
C
C        Z=(ZR,ZI) CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
C          REDUCTIONS BY  CQZHES  AND  CQZVAL, IF PERFORMED.
C          IF THE EIGENVECTORS OF THE TRIANGULAR PROBLEM ARE
C          DESIRED, Z MUST CONTAIN THE IDENTITY MATRIX.
C
C     ON OUTPUT-
C
C        A IS UNALTERED,
C
C        B HAS BEEN DESTROYED,
C
C        ALFR, ALFI, AND BETA ARE UNALTERED,
C
C        Z CONTAINS THE EIGENVECTORS.  EACH EIGENVECTOR IS NORMALIZED
C          SO THAT THE MODULUS OF ITS LARGEST COMPONENT IS 1.0 .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C     ------------------------------------------------------------------
C
      IF (N .LE. 1) GO TO 1001
      EPSB = BR(N,1)
C     ********** FOR EN=N STEP -1 UNTIL 2 DO -- **********
      DO 800 NN = 2, N
         EN = N + 2 - NN
         NA = EN - 1
         ALMR = ALFR(EN)
         ALMI = ALFI(EN)
         BETM = BETA(EN)
C     ********** FOR I=EN-1 STEP -1 UNTIL 1 DO -- **********
         DO 700 II = 1, NA
            I = EN - II
            R = 0.0D0
            RI = 0.0D0
            M = I + 1
C
            DO 610 J = M, EN
               T = BETM * AR(I,J) - ALMR * BR(I,J) + ALMI * BI(I,J)
               TI = BETM * AI(I,J) - ALMR * BI(I,J) - ALMI * BR(I,J)
               IF (J .EQ. EN) GO TO 605
               XI = T * BI(J,EN) + TI * BR(J,EN)
               T = T * BR(J,EN) - TI * BI(J,EN)
               TI = XI
  605          R = R + T
               RI = RI + TI
  610       CONTINUE
C
            T = ALMR * BETA(I) - BETM * ALFR(I)
            TI = ALMI * BETA(I) - BETM * ALFI(I)
            IF (T .EQ. 0.0D0 .AND. TI .EQ. 0.0D0) T = EPSB
            Z3 = DCMPLX(R,RI) / DCMPLX(T,TI)
            BR(I,EN) = DBLE(Z3)
            BI(I,EN) = DIMAG(Z3)
  700    CONTINUE
C
  800 CONTINUE
C     ********** END BACK SUBSTITUTION.
C                TRANSFORM TO ORIGINAL COORDINATE SYSTEM.
C                FOR J=N STEP -1 UNTIL 2 DO -- **********
      DO 880 JJ = 2, N
         J = N + 2 - JJ
         M = J - 1
C
         DO 880 I = 1, N
C
            DO 860 K = 1, M
               ZR(I,J) = ZR(I,J) + ZR(I,K) * BR(K,J) - ZI(I,K) * BI(K,J)
               ZI(I,J) = ZI(I,J) + ZR(I,K) * BI(K,J) + ZI(I,K) * BR(K,J)
  860       CONTINUE
C
  880 CONTINUE
C     ********** NORMALIZE SO THAT MODULUS OF LARGEST
C                COMPONENT OF EACH VECTOR IS 1 **********
      DO 950 J = 1, N
         T = 0.0D0
C
         DO 930 I = 1, N
            R = ABS(DCMPLX(ZR(I,J),ZI(I,J)))
            IF (R .GT. T) T = R
  930    CONTINUE
C
         DO 940 I = 1, N
            ZR(I,J) = ZR(I,J) / T
            ZI(I,J) = ZI(I,J) / T
  940    CONTINUE
C
  950 CONTINUE
C
 1001 CONTINUE
*
*     ----------------------- BEGIN TIMING CODE ------------------------
      OPS = OPS + DBLE( N )*DBLE( 14*N**2 + 15*N - 15 ) / DBLE( 2 )
*     ------------------------ END TIMING CODE -------------------------
*
      RETURN
C     ********** LAST CARD OF CQZVEC **********
      END