File: sopla.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (464 lines) | stat: -rw-r--r-- 14,960 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
      REAL             FUNCTION SOPLA( SUBNAM, M, N, KL, KU, NB )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER*6        SUBNAM
      INTEGER            KL, KU, M, N, NB
*     ..
*
*  Purpose
*  =======
*
*  SOPLA computes an approximation of the number of floating point
*  operations used by the subroutine SUBNAM with the given values
*  of the parameters M, N, KL, KU, and NB.
*
*  This version counts operations for the LAPACK subroutines.
*
*  Arguments
*  =========
*
*  SUBNAM  (input) CHARACTER*6
*          The name of the subroutine.
*
*  M       (input) INTEGER
*          The number of rows of the coefficient matrix.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the coefficient matrix.
*          For solve routine when the matrix is square,
*          N is the number of right hand sides.  N >= 0.
*
*  KL      (input) INTEGER
*          The lower band width of the coefficient matrix.
*          If needed, 0 <= KL <= M-1.
*          For xGEQRS, KL is the number of right hand sides.
*
*  KU      (input) INTEGER
*          The upper band width of the coefficient matrix.
*          If needed, 0 <= KU <= N-1.
*
*  NB      (input) INTEGER
*          The block size.  If needed, NB >= 1.
*
*  Notes
*  =====
*
*  In the comments below, the association is given between arguments
*  in the requested subroutine and local arguments.  For example,
*
*  xGETRS:  N, NRHS  =>  M, N
*
*  means that arguments N and NRHS in SGETRS are passed to arguments
*  M and N in this procedure.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            CORZ, SORD
      CHARACTER          C1
      CHARACTER*2        C2
      CHARACTER*3        C3
      INTEGER            I
      REAL               ADDFAC, ADDS, EK, EM, EMN, EN, MULFAC, MULTS,
     $                   WL, WU
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, LSAMEN
      EXTERNAL           LSAME, LSAMEN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     --------------------------------------------------------
*     Initialize SOPLA to 0 and do a quick return if possible.
*     --------------------------------------------------------
*
      SOPLA = 0
      MULTS = 0
      ADDS = 0
      C1 = SUBNAM( 1: 1 )
      C2 = SUBNAM( 2: 3 )
      C3 = SUBNAM( 4: 6 )
      SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' )
      CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' )
      IF( M.LE.0 .OR. .NOT.( SORD .OR. CORZ ) )
     $   RETURN
*
*     ---------------------------------------------------------
*     If the coefficient matrix is real, count each add as 1
*     operation and each multiply as 1 operation.
*     If the coefficient matrix is complex, count each add as 2
*     operations and each multiply as 6 operations.
*     ---------------------------------------------------------
*
      IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) ) THEN
         ADDFAC = 1
         MULFAC = 1
      ELSE
         ADDFAC = 2
         MULFAC = 6
      END IF
      EM = M
      EN = N
      EK = KL
*
*     ---------------------------------
*     GE:  GEneral rectangular matrices
*     ---------------------------------
*
      IF( LSAMEN( 2, C2, 'GE' ) ) THEN
*
*        xGETRF:  M, N  =>  M, N
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            EMN = MIN( M, N )
            ADDS = EMN*( EM*EN-( EM+EN )*( EMN+1. ) / 2.+( EMN+1. )*
     $             ( 2.*EMN+1. ) / 6. )
            MULTS = ADDS + EMN*( EM-( EMN+1. ) / 2. )
*
*        xGETRS:  N, NRHS  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = EN*EM*EM
            ADDS = EN*( EM*( EM-1. ) )
*
*        xGETRI:  N  =>  M
*
         ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
            MULTS = EM*( 5. / 6.+EM*( 1. / 2.+EM*( 2. / 3. ) ) )
            ADDS = EM*( 5. / 6.+EM*( -3. / 2.+EM*( 2. / 3. ) ) )
*
*        xGEQRF or xGEQLF:  M, N  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'QRF' ) .OR.
     $            LSAMEN( 3, C3, 'QR2' ) .OR.
     $            LSAMEN( 3, C3, 'QLF' ) .OR. LSAMEN( 3, C3, 'QL2' ) )
     $             THEN
            IF( M.GE.N ) THEN
               MULTS = EN*( ( ( 23. / 6. )+EM+EN / 2. )+EN*
     $                 ( EM-EN / 3. ) )
               ADDS = EN*( ( 5. / 6. )+EN*( 1. / 2.+( EM-EN / 3. ) ) )
            ELSE
               MULTS = EM*( ( ( 23. / 6. )+2.*EN-EM / 2. )+EM*
     $                 ( EN-EM / 3. ) )
               ADDS = EM*( ( 5. / 6. )+EN-EM / 2.+EM*( EN-EM / 3. ) )
            END IF
*
*        xGERQF or xGELQF:  M, N  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'RQF' ) .OR.
     $            LSAMEN( 3, C3, 'RQ2' ) .OR.
     $            LSAMEN( 3, C3, 'LQF' ) .OR. LSAMEN( 3, C3, 'LQ2' ) )
     $             THEN
            IF( M.GE.N ) THEN
               MULTS = EN*( ( ( 29. / 6. )+EM+EN / 2. )+EN*
     $                 ( EM-EN / 3. ) )
               ADDS = EN*( ( 5. / 6. )+EM+EN*
     $                ( -1. / 2.+( EM-EN / 3. ) ) )
            ELSE
               MULTS = EM*( ( ( 29. / 6. )+2.*EN-EM / 2. )+EM*
     $                 ( EN-EM / 3. ) )
               ADDS = EM*( ( 5. / 6. )+EM / 2.+EM*( EN-EM / 3. ) )
            END IF
*
*        xGEQPF: M, N => M, N
*
         ELSE IF( LSAMEN( 3, C3, 'QPF' ) ) THEN
            EMN = MIN( M, N )
            MULTS = 2*EN*EN + EMN*( 3*EM+5*EN+2*EM*EN-( EMN+1 )*
     $              ( 4+EN+EM-( 2*EMN+1 ) / 3 ) )
            ADDS = EN*EN + EMN*( 2*EM+EN+2*EM*EN-( EMN+1 )*
     $             ( 2+EN+EM-( 2*EMN+1 ) / 3 ) )
*
*        xGEQRS or xGERQS:  M, N, NRHS  =>  M, N, KL
*
         ELSE IF( LSAMEN( 3, C3, 'QRS' ) .OR. LSAMEN( 3, C3, 'RQS' ) )
     $             THEN
            MULTS = EK*( EN*( 2.-EK )+EM*( 2.*EN+( EM+1. ) / 2. ) )
            ADDS = EK*( EN*( 1.-EK )+EM*( 2.*EN+( EM-1. ) / 2. ) )
*
*        xGELQS or xGEQLS:  M, N, NRHS  =>  M, N, KL
*
         ELSE IF( LSAMEN( 3, C3, 'LQS' ) .OR. LSAMEN( 3, C3, 'QLS' ) )
     $             THEN
            MULTS = EK*( EM*( 2.-EK )+EN*( 2.*EM+( EN+1. ) / 2. ) )
            ADDS = EK*( EM*( 1.-EK )+EN*( 2.*EM+( EN-1. ) / 2. ) )
*
*        xGEBRD:  M, N  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'BRD' ) ) THEN
            IF( M.GE.N ) THEN
               MULTS = EN*( 20. / 3.+EN*( 2.+( 2.*EM-( 2. / 3. )*
     $                 EN ) ) )
               ADDS = EN*( 5. / 3.+( EN-EM )+EN*
     $                ( 2.*EM-( 2. / 3. )*EN ) )
            ELSE
               MULTS = EM*( 20. / 3.+EM*( 2.+( 2.*EN-( 2. / 3. )*
     $                 EM ) ) )
               ADDS = EM*( 5. / 3.+( EM-EN )+EM*
     $                ( 2.*EN-( 2. / 3. )*EM ) )
            END IF
*
*        xGEHRD:  N  =>  M
*
         ELSE IF( LSAMEN( 3, C3, 'HRD' ) ) THEN
            IF( M.EQ.1 ) THEN
               MULTS = 0.
               ADDS = 0.
            ELSE
               MULTS = -13. + EM*( -7. / 6.+EM*( 0.5+EM*( 5. / 3. ) ) )
               ADDS = -8. + EM*( -2. / 3.+EM*( -1.+EM*( 5. / 3. ) ) )
            END IF
*
         END IF
*
*     ----------------------------
*     GB:  General Banded matrices
*     ----------------------------
*        Note:  The operation count is overestimated because
*        it is assumed that the factor U fills in to the maximum
*        extent, i.e., that its bandwidth goes from KU to KL + KU.
*
      ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
*
*        xGBTRF:  M, N, KL, KU  =>  M, N, KL, KU
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            DO 10 I = MIN( M, N ), 1, -1
               WL = MAX( 0, MIN( KL, M-I ) )
               WU = MAX( 0, MIN( KL+KU, N-I ) )
               MULTS = MULTS + WL*( 1.+WU )
               ADDS = ADDS + WL*WU
   10       CONTINUE
*
*        xGBTRS:  N, NRHS, KL, KU  =>  M, N, KL, KU
*
         ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            WL = MAX( 0, MIN( KL, M-1 ) )
            WU = MAX( 0, MIN( KL+KU, M-1 ) )
            MULTS = EN*( EM*( WL+1.+WU )-0.5*
     $              ( WL*( WL+1. )+WU*( WU+1. ) ) )
            ADDS = EN*( EM*( WL+WU )-0.5*( WL*( WL+1. )+WU*( WU+1. ) ) )
*
         END IF
*
*     --------------------------------------
*     PO:  POsitive definite matrices
*     PP:  Positive definite Packed matrices
*     --------------------------------------
*
      ELSE IF( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'PP' ) ) THEN
*
*        xPOTRF:  N  =>  M
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            MULTS = EM*( 1. / 3.+EM*( 1. / 2.+EM*( 1. / 6. ) ) )
            ADDS = ( 1. / 6. )*EM*( -1.+EM*EM )
*
*        xPOTRS:  N, NRHS  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = EN*( EM*( EM+1. ) )
            ADDS = EN*( EM*( EM-1. ) )
*
*        xPOTRI:  N  =>  M
*
         ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
            MULTS = EM*( 2. / 3.+EM*( 1.+EM*( 1. / 3. ) ) )
            ADDS = EM*( 1. / 6.+EM*( -1. / 2.+EM*( 1. / 3. ) ) )
*
         END IF
*
*     ------------------------------------
*     PB:  Positive definite Band matrices
*     ------------------------------------
*
      ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
*        xPBTRF:  N, K  =>  M, KL
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            MULTS = EK*( -2. / 3.+EK*( -1.+EK*( -1. / 3. ) ) ) +
     $              EM*( 1.+EK*( 3. / 2.+EK*( 1. / 2. ) ) )
            ADDS = EK*( -1. / 6.+EK*( -1. / 2.+EK*( -1. / 3. ) ) ) +
     $             EM*( EK / 2.*( 1.+EK ) )
*
*        xPBTRS:  N, NRHS, K  =>  M, N, KL
*
         ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = EN*( ( 2*EM-EK )*( EK+1. ) )
            ADDS = EN*( EK*( 2*EM-( EK+1. ) ) )
*
         END IF
*
*     ----------------------------------
*     PT:  Positive definite Tridiagonal
*     ----------------------------------
*
      ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
*        xPTTRF:  N  =>  M
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            MULTS = 2*( EM-1 )
            ADDS = EM - 1
*
*        xPTTRS:  N, NRHS  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = EN*( 3*EM-2 )
            ADDS = EN*( 2*( EM-1 ) )
*
*        xPTSV:  N, NRHS  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
            MULTS = 2*( EM-1 ) + EN*( 3*EM-2 )
            ADDS = EM - 1 + EN*( 2*( EM-1 ) )
         END IF
*
*     --------------------------------------------------------
*     SY:  SYmmetric indefinite matrices
*     SP:  Symmetric indefinite Packed matrices
*     HE:  HErmitian indefinite matrices (complex only)
*     HP:  Hermitian indefinite Packed matrices (complex only)
*     --------------------------------------------------------
*
      ELSE IF( LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 2, C2, 'SP' ) .OR.
     $         LSAMEN( 3, SUBNAM, 'CHE' ) .OR.
     $         LSAMEN( 3, SUBNAM, 'ZHE' ) .OR.
     $         LSAMEN( 3, SUBNAM, 'CHP' ) .OR.
     $         LSAMEN( 3, SUBNAM, 'ZHP' ) ) THEN
*
*        xSYTRF:  N  =>  M
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            MULTS = EM*( 10. / 3.+EM*( 1. / 2.+EM*( 1. / 6. ) ) )
            ADDS = EM / 6.*( -1.+EM*EM )
*
*        xSYTRS:  N, NRHS  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = EN*EM*EM
            ADDS = EN*( EM*( EM-1. ) )
*
*        xSYTRI:  N  =>  M
*
         ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
            MULTS = EM*( 2. / 3.+EM*EM*( 1. / 3. ) )
            ADDS = EM*( -1. / 3.+EM*EM*( 1. / 3. ) )
*
*        xSYTRD, xSYTD2:  N  =>  M
*
         ELSE IF( LSAMEN( 3, C3, 'TRD' ) .OR. LSAMEN( 3, C3, 'TD2' ) )
     $             THEN
            IF( M.EQ.1 ) THEN
               MULTS = 0.
               ADDS = 0.
            ELSE
               MULTS = -15. + EM*( -1. / 6.+EM*
     $                 ( 5. / 2.+EM*( 2. / 3. ) ) )
               ADDS = -4. + EM*( -8. / 3.+EM*( 1.+EM*( 2. / 3. ) ) )
            END IF
         END IF
*
*     -------------------
*     Triangular matrices
*     -------------------
*
      ELSE IF( LSAMEN( 2, C2, 'TR' ) .OR. LSAMEN( 2, C2, 'TP' ) ) THEN
*
*        xTRTRS:  N, NRHS  =>  M, N
*
         IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = EN*EM*( EM+1. ) / 2.
            ADDS = EN*EM*( EM-1. ) / 2.
*
*        xTRTRI:  N  =>  M
*
         ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN
            MULTS = EM*( 1. / 3.+EM*( 1. / 2.+EM*( 1. / 6. ) ) )
            ADDS = EM*( 1. / 3.+EM*( -1. / 2.+EM*( 1. / 6. ) ) )
*
         END IF
*
      ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
*
*        xTBTRS:  N, NRHS, K  =>  M, N, KL
*
         IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = EN*( EM*( EM+1. ) / 2.-( EM-EK-1. )*( EM-EK ) / 2. )
            ADDS = EN*( EM*( EM-1. ) / 2.-( EM-EK-1. )*( EM-EK ) / 2. )
         END IF
*
*     --------------------
*     Trapezoidal matrices
*     --------------------
*
      ELSE IF( LSAMEN( 2, C2, 'TZ' ) ) THEN
*
*        xTZRQF:  M, N => M, N
*
         IF( LSAMEN( 3, C3, 'RQF' ) ) THEN
            EMN = MIN( M, N )
            MULTS = 3*EM*( EN-EM+1 ) + ( 2*EN-2*EM+3 )*
     $              ( EM*EM-EMN*( EMN+1 ) / 2 )
            ADDS = ( EN-EM+1 )*( EM+2*EM*EM-EMN*( EMN+1 ) )
         END IF
*
*     -------------------
*     Orthogonal matrices
*     -------------------
*
      ELSE IF( ( SORD .AND. LSAMEN( 2, C2, 'OR' ) ) .OR.
     $         ( CORZ .AND. LSAMEN( 2, C2, 'UN' ) ) ) THEN
*
*        -MQR, -MLQ, -MQL, or -MRQ:  M, N, K, SIDE  =>  M, N, KL, KU
*           where KU<= 0 indicates SIDE = 'L'
*           and   KU> 0  indicates SIDE = 'R'
*
         IF( LSAMEN( 3, C3, 'MQR' ) .OR. LSAMEN( 3, C3, 'MLQ' ) .OR.
     $       LSAMEN( 3, C3, 'MQL' ) .OR. LSAMEN( 3, C3, 'MRQ' ) ) THEN
            IF( KU.LE.0 ) THEN
               MULTS = EK*EN*( 2.*EM+2.-EK )
               ADDS = EK*EN*( 2.*EM+1.-EK )
            ELSE
               MULTS = EK*( EM*( 2.*EN-EK )+( EM+EN+( 1.-EK ) / 2. ) )
               ADDS = EK*EM*( 2.*EN+1.-EK )
            END IF
*
*        -GQR or -GQL:  M, N, K  =>  M, N, KL
*
         ELSE IF( LSAMEN( 3, C3, 'GQR' ) .OR. LSAMEN( 3, C3, 'GQL' ) )
     $             THEN
            MULTS = EK*( -5. / 3.+( 2.*EN-EK )+
     $              ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) )
            ADDS = EK*( 1. / 3.+( EN-EM )+
     $             ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) )
*
*        -GLQ or -GRQ:  M, N, K  =>  M, N, KL
*
         ELSE IF( LSAMEN( 3, C3, 'GLQ' ) .OR. LSAMEN( 3, C3, 'GRQ' ) )
     $             THEN
            MULTS = EK*( -2. / 3.+( EM+EN-EK )+
     $              ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) )
            ADDS = EK*( 1. / 3.+( EM-EN )+
     $             ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) )
*
         END IF
*
      END IF
*
      SOPLA = MULFAC*MULTS + ADDFAC*ADDS
*
      RETURN
*
*     End of SOPLA
*
      END