1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
SUBROUTINE CTIMBR( LINE, NM, MVAL, NVAL, NK, KVAL, NNB, NBVAL,
$ NXVAL, NLDA, LDAVAL, TIMMIN, A, B, D, TAU,
$ WORK, RESLTS, LDR1, LDR2, LDR3, NOUT )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER LDR1, LDR2, LDR3, NK, NLDA, NM, NNB, NOUT
REAL TIMMIN
* ..
* .. Array Arguments ..
INTEGER KVAL( * ), LDAVAL( * ), MVAL( * ), NBVAL( * ),
$ NVAL( * ), NXVAL( * )
REAL D( * ), RESLTS( LDR1, LDR2, LDR3, * )
COMPLEX A( * ), B( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CTIMBR times CGEBRD, CUNGBR, and CUNMBR.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* The input line that requested this routine. The first six
* characters contain either the name of a subroutine or a
* generic path name. The remaining characters may be used to
* specify the individual routines to be timed. See ATIMIN for
* a full description of the format of the input line.
*
* NM (input) INTEGER
* The number of values of M and N contained in the vectors
* MVAL and NVAL. The matrix sizes are used in pairs (M,N).
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix row dimension M.
*
* NVAL (input) INTEGER array, dimension (NM)
* The values of the matrix column dimension N.
*
* NK (input) INTEGER
* The number of values of K contained in the vector KVAL.
*
* KVAL (input) INTEGER array, dimension (NK)
* The values of the matrix dimension K.
*
* NNB (input) INTEGER
* The number of values of NB and NX contained in the
* vectors NBVAL and NXVAL. The blocking parameters are used
* in pairs (NB,NX).
*
* NBVAL (input) INTEGER array, dimension (NNB)
* The values of the blocksize NB.
*
* NXVAL (input) INTEGER array, dimension (NNB)
* The values of the crossover point NX.
*
* NLDA (input) INTEGER
* The number of values of LDA contained in the vector LDAVAL.
*
* LDAVAL (input) INTEGER array, dimension (NLDA)
* The values of the leading dimension of the array A.
*
* TIMMIN (input) REAL
* The minimum time a subroutine will be timed.
*
* A (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
* where LDAMAX and NMAX are the maximum values of LDA and N.
*
* B (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
*
* D (workspace) REAL array, dimension
* (2*max(min(M,N))-1)
*
* TAU (workspace) COMPLEX array, dimension
* (2*max(min(M,N)))
*
* WORK (workspace) COMPLEX array, dimension (LDAMAX*NBMAX)
* where NBMAX is the maximum value of NB.
*
* RESLTS (output) REAL array, dimension (LDR1,LDR2,LDR3,6)
* The timing results for each subroutine over the relevant
* values of (M,N), (NB,NX), and LDA.
*
* LDR1 (input) INTEGER
* The first dimension of RESLTS. LDR1 >= max(1,NNB).
*
* LDR2 (input) INTEGER
* The second dimension of RESLTS. LDR2 >= max(1,NM).
*
* LDR3 (input) INTEGER
* The third dimension of RESLTS. LDR3 >= max(1,NLDA).
*
* NOUT (input) INTEGER
* The unit number for output.
*
* Internal Parameters
* ===================
*
* MODE INTEGER
* The matrix type. MODE = 3 is a geometric distribution of
* eigenvalues. See CLATMS for further details.
*
* COND REAL
* The condition number of the matrix. The singular values are
* set to values from DMAX to DMAX/COND.
*
* DMAX REAL
* The magnitude of the largest singular value.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NSUBS
PARAMETER ( NSUBS = 3 )
INTEGER MODE
REAL COND, DMAX
PARAMETER ( MODE = 3, COND = 100.0E0, DMAX = 1.0E0 )
* ..
* .. Local Scalars ..
CHARACTER LABK, LABM, LABN, SIDE, TRANS, VECT
CHARACTER*3 PATH
CHARACTER*6 CNAME
INTEGER I, I3, I4, IC, ICL, IK, ILDA, IM, INB, INFO,
$ INFO2, ISIDE, ISUB, ITOFF, ITRAN, IVECT, K, K1,
$ LDA, LW, M, M1, MINMN, N, N1, NB, NQ, NX
REAL OPS, S1, S2, TIME, UNTIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER SIDES( 2 ), TRANSS( 2 ), VECTS( 2 )
CHARACTER*6 SUBNAM( NSUBS )
INTEGER ISEED( 4 ), RESEED( 4 )
* ..
* .. External Functions ..
REAL SECOND, SMFLOP, SOPLA
EXTERNAL SECOND, SMFLOP, SOPLA
* ..
* .. External Subroutines ..
EXTERNAL ATIMCK, ATIMIN, CGEBRD, CLACPY, CLATMS, CTIMMG,
$ CUNGBR, CUNMBR, ICOPY, SPRTB4, SPRTB5, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Data statements ..
DATA SUBNAM / 'CGEBRD', 'CUNGBR', 'CUNMBR' / ,
$ SIDES / 'L', 'R' / , VECTS / 'Q', 'P' / ,
$ TRANSS / 'N', 'C' /
DATA ISEED / 0, 0, 0, 1 /
* ..
* .. Executable Statements ..
*
* Extract the timing request from the input line.
*
PATH( 1: 1 ) = 'Complex precision'
PATH( 2: 3 ) = 'BR'
CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( INFO.NE.0 )
$ GO TO 220
*
* Check that M <= LDA for the input values.
*
CNAME = LINE( 1: 6 )
CALL ATIMCK( 1, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
IF( INFO.GT.0 ) THEN
WRITE( NOUT, FMT = 9999 )CNAME
GO TO 220
END IF
*
* Check that N <= LDA and K <= LDA for SORMBR
*
IF( TIMSUB( 3 ) ) THEN
CALL ATIMCK( 2, CNAME, NM, NVAL, NLDA, LDAVAL, NOUT, INFO )
CALL ATIMCK( 3, CNAME, NK, KVAL, NLDA, LDAVAL, NOUT, INFO2 )
IF( INFO.GT.0 .OR. INFO2.GT.0 ) THEN
WRITE( NOUT, FMT = 9999 )SUBNAM( 3 )
TIMSUB( 3 ) = .FALSE.
END IF
END IF
*
* Do for each pair of values (M,N):
*
DO 140 IM = 1, NM
M = MVAL( IM )
N = NVAL( IM )
MINMN = MIN( M, N )
CALL ICOPY( 4, ISEED, 1, RESEED, 1 )
*
* Do for each value of LDA:
*
DO 130 ILDA = 1, NLDA
LDA = LDAVAL( ILDA )
*
* Do for each pair of values (NB, NX) in NBVAL and NXVAL.
*
DO 120 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
LW = MAX( M+N, MAX( 1, NB )*( M+N ) )
*
* Generate a test matrix of size M by N.
*
CALL ICOPY( 4, RESEED, 1, ISEED, 1 )
CALL CLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', D, MODE,
$ COND, DMAX, M, N, 'No packing', B, LDA,
$ WORK, INFO )
*
IF( TIMSUB( 1 ) ) THEN
*
* CGEBRD: Block reduction to bidiagonal form
*
CALL CLACPY( 'Full', M, N, B, LDA, A, LDA )
IC = 0
S1 = SECOND( )
10 CONTINUE
CALL CGEBRD( M, N, A, LDA, D, D( MINMN ), TAU,
$ TAU( MINMN+1 ), WORK, LW, INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CLACPY( 'Full', M, N, B, LDA, A, LDA )
GO TO 10
END IF
*
* Subtract the time used in CLACPY.
*
ICL = 1
S1 = SECOND( )
20 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CLACPY( 'Full', M, N, A, LDA, B, LDA )
GO TO 20
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
OPS = SOPLA( 'CGEBRD', M, N, 0, 0, NB )
RESLTS( INB, IM, ILDA, 1 ) = SMFLOP( OPS, TIME, INFO )
ELSE
*
* If CGEBRD was not timed, generate a matrix and reduce
* it using CGEBRD anyway so that the orthogonal
* transformations may be used in timing the other
* routines.
*
CALL CLACPY( 'Full', M, N, B, LDA, A, LDA )
CALL CGEBRD( M, N, A, LDA, D, D( MINMN ), TAU,
$ TAU( MINMN+1 ), WORK, LW, INFO )
*
END IF
*
IF( TIMSUB( 2 ) ) THEN
*
* CUNGBR: Generate one of the orthogonal matrices Q or
* P' from the reduction to bidiagonal form
* A = Q * B * P'.
*
DO 50 IVECT = 1, 2
IF( IVECT.EQ.1 ) THEN
VECT = 'Q'
M1 = M
N1 = MIN( M, N )
K1 = N
ELSE
VECT = 'P'
M1 = MIN( M, N )
N1 = N
K1 = M
END IF
I3 = ( IVECT-1 )*NLDA
LW = MAX( 1, MAX( 1, NB )*MIN( M, N ) )
CALL CLACPY( 'Full', M, N, A, LDA, B, LDA )
IC = 0
S1 = SECOND( )
30 CONTINUE
CALL CUNGBR( VECT, M1, N1, K1, B, LDA, TAU, WORK,
$ LW, INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CLACPY( 'Full', M, N, A, LDA, B, LDA )
GO TO 30
END IF
*
* Subtract the time used in CLACPY.
*
ICL = 1
S1 = SECOND( )
40 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CLACPY( 'Full', M, N, A, LDA, B, LDA )
GO TO 40
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
*
* Op count for CUNGBR:
*
IF( IVECT.EQ.1 ) THEN
IF( M1.GE.K1 ) THEN
OPS = SOPLA( 'CUNGQR', M1, N1, K1, -1, NB )
ELSE
OPS = SOPLA( 'CUNGQR', M1-1, M1-1, M1-1, -1,
$ NB )
END IF
ELSE
IF( K1.LT.N1 ) THEN
OPS = SOPLA( 'CUNGLQ', M1, N1, K1, -1, NB )
ELSE
OPS = SOPLA( 'CUNGLQ', N1-1, N1-1, N1-1, -1,
$ NB )
END IF
END IF
*
RESLTS( INB, IM, I3+ILDA, 2 ) = SMFLOP( OPS, TIME,
$ INFO )
50 CONTINUE
END IF
*
IF( TIMSUB( 3 ) ) THEN
*
* CUNMBR: Multiply an m by n matrix B by one of the
* orthogonal matrices Q or P' from the reduction to
* bidiagonal form A = Q * B * P'.
*
DO 110 IVECT = 1, 2
IF( IVECT.EQ.1 ) THEN
VECT = 'Q'
K1 = N
NQ = M
ELSE
VECT = 'P'
K1 = M
NQ = N
END IF
I3 = ( IVECT-1 )*NLDA
I4 = 2
DO 100 ISIDE = 1, 2
SIDE = SIDES( ISIDE )
DO 90 IK = 1, NK
K = KVAL( IK )
IF( ISIDE.EQ.1 ) THEN
M1 = NQ
N1 = K
LW = MAX( 1, MAX( 1, NB )*N1 )
ELSE
M1 = K
N1 = NQ
LW = MAX( 1, MAX( 1, NB )*M1 )
END IF
ITOFF = 0
DO 80 ITRAN = 1, 2
TRANS = TRANSS( ITRAN )
CALL CTIMMG( 0, M1, N1, B, LDA, 0, 0 )
IC = 0
S1 = SECOND( )
60 CONTINUE
CALL CUNMBR( VECT, SIDE, TRANS, M1, N1,
$ K1, A, LDA, TAU, B, LDA,
$ WORK, LW, INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CTIMMG( 0, M1, N1, B, LDA, 0, 0 )
GO TO 60
END IF
*
* Subtract the time used in CTIMMG.
*
ICL = 1
S1 = SECOND( )
70 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CTIMMG( 0, M1, N1, B, LDA, 0, 0 )
GO TO 70
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
IF( IVECT.EQ.1 ) THEN
*
* Op count for CUNMBR, VECT = 'Q':
*
IF( NQ.GE.K1 ) THEN
OPS = SOPLA( 'CUNMQR', M1, N1, K1,
$ ISIDE-1, NB )
ELSE IF( ISIDE.EQ.1 ) THEN
OPS = SOPLA( 'CUNMQR', M1-1, N1,
$ NQ-1, ISIDE-1, NB )
ELSE
OPS = SOPLA( 'CUNMQR', M1, N1-1,
$ NQ-1, ISIDE-1, NB )
END IF
ELSE
*
* Op count for CUNMBR, VECT = 'P':
*
IF( NQ.GE.K1 ) THEN
OPS = SOPLA( 'CUNMLQ', M1, N1, K1,
$ ISIDE-1, NB )
ELSE IF( ISIDE.EQ.1 ) THEN
OPS = SOPLA( 'CUNMLQ', M1-1, N1,
$ NQ-1, ISIDE-1, NB )
ELSE
OPS = SOPLA( 'CUNMLQ', M1, N1-1,
$ NQ-1, ISIDE-1, NB )
END IF
END IF
*
RESLTS( INB, IM, I3+ILDA,
$ I4+ITOFF+IK ) = SMFLOP( OPS, TIME,
$ INFO )
ITOFF = NK
80 CONTINUE
90 CONTINUE
I4 = 2*NK + 2
100 CONTINUE
110 CONTINUE
END IF
120 CONTINUE
130 CONTINUE
140 CONTINUE
*
* Print a table of results for each timed routine.
*
DO 210 ISUB = 1, NSUBS
IF( .NOT.TIMSUB( ISUB ) )
$ GO TO 210
WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
IF( NLDA.GT.1 ) THEN
DO 150 I = 1, NLDA
WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
150 CONTINUE
END IF
IF( ISUB.EQ.1 ) THEN
WRITE( NOUT, FMT = * )
CALL SPRTB4( '( NB, NX)', 'M', 'N', NNB, NBVAL, NXVAL, NM,
$ MVAL, NVAL, NLDA, RESLTS( 1, 1, 1, ISUB ),
$ LDR1, LDR2, NOUT )
ELSE IF( ISUB.EQ.2 ) THEN
DO 160 IVECT = 1, 2
I3 = ( IVECT-1 )*NLDA + 1
IF( IVECT.EQ.1 ) THEN
LABK = 'N'
LABM = 'M'
LABN = 'K'
ELSE
LABK = 'M'
LABM = 'K'
LABN = 'N'
END IF
WRITE( NOUT, FMT = 9996 )SUBNAM( ISUB ), VECTS( IVECT ),
$ LABK, LABM, LABN
CALL SPRTB4( '( NB, NX)', LABM, LABN, NNB, NBVAL,
$ NXVAL, NM, MVAL, NVAL, NLDA,
$ RESLTS( 1, 1, I3, ISUB ), LDR1, LDR2, NOUT )
160 CONTINUE
ELSE IF( ISUB.EQ.3 ) THEN
DO 200 IVECT = 1, 2
I3 = ( IVECT-1 )*NLDA + 1
I4 = 3
DO 190 ISIDE = 1, 2
IF( ISIDE.EQ.1 ) THEN
IF( IVECT.EQ.1 ) THEN
LABM = 'M'
LABN = 'K'
ELSE
LABM = 'K'
LABN = 'M'
END IF
LABK = 'N'
ELSE
IF( IVECT.EQ.1 ) THEN
LABM = 'N'
LABN = 'K'
ELSE
LABM = 'K'
LABN = 'N'
END IF
LABK = 'M'
END IF
DO 180 ITRAN = 1, 2
DO 170 IK = 1, NK
WRITE( NOUT, FMT = 9995 )SUBNAM( ISUB ),
$ VECTS( IVECT ), SIDES( ISIDE ),
$ TRANSS( ITRAN ), LABK, KVAL( IK )
CALL SPRTB5( 'NB', LABM, LABN, NNB, NBVAL, NM,
$ MVAL, NVAL, NLDA,
$ RESLTS( 1, 1, I3, I4 ), LDR1, LDR2,
$ NOUT )
I4 = I4 + 1
170 CONTINUE
180 CONTINUE
190 CONTINUE
200 CONTINUE
END IF
210 CONTINUE
220 CONTINUE
RETURN
9999 FORMAT( 1X, A6, ' timing run not attempted', / )
9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
9997 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
9996 FORMAT( / 5X, A6, ' with VECT = ''', A1, ''', ', A1, ' = MIN(',
$ A1, ',', A1, ')', / )
9995 FORMAT( / 5X, A6, ' with VECT = ''', A1, ''', SIDE = ''', A1,
$ ''', TRANS = ''', A1, ''', ', A1, ' =', I6, / )
*
* End of CTIMBR
*
END
|