1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
SUBROUTINE CTIMGT( LINE, NM, MVAL, NNS, NSVAL, NLDA, LDAVAL,
$ TIMMIN, A, B, IWORK, RESLTS, LDR1, LDR2, LDR3,
$ NOUT )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER LDR1, LDR2, LDR3, NLDA, NM, NNS, NOUT
REAL TIMMIN
* ..
* .. Array Arguments ..
INTEGER IWORK( * ), LDAVAL( * ), MVAL( * ), NSVAL( * )
REAL RESLTS( LDR1, LDR2, LDR3, * )
COMPLEX A( * ), B( * )
* ..
*
* Purpose
* =======
*
* CTIMGT times CGTTRF, -TRS, -SV, and -SL.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* The input line that requested this routine. The first six
* characters contain either the name of a subroutine or a
* generic path name. The remaining characters may be used to
* specify the individual routines to be timed. See ATIMIN for
* a full description of the format of the input line.
*
* NM (input) INTEGER
* The number of values of M contained in the vector MVAL.
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix size M.
*
* NNS (input) INTEGER
* The number of values of NRHS contained in the vector NSVAL.
*
* NSVAL (input) INTEGER array, dimension (NNS)
* The values of the number of right hand sides NRHS.
*
* NLDA (input) INTEGER
* The number of values of LDA contained in the vector LDAVAL.
*
* LDAVAL (input) INTEGER array, dimension (NLDA)
* The values of the leading dimension of the array A.
*
* TIMMIN (input) REAL
* The minimum time a subroutine will be timed.
*
* A (workspace) COMPLEX array, dimension (NMAX*4)
* where NMAX is the maximum value permitted for N.
*
* B (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
*
* IWORK (workspace) INTEGER array, dimension (NMAX)
*
* RESLTS (output) REAL array, dimension
* (LDR1,LDR2,LDR3,NSUBS+1)
* The timing results for each subroutine over the relevant
* values of N.
*
* LDR1 (input) INTEGER
* The first dimension of RESLTS. LDR1 >= 1.
*
* LDR2 (input) INTEGER
* The second dimension of RESLTS. LDR2 >= max(1,NM).
*
* LDR3 (input) INTEGER
* The third dimension of RESLTS. LDR3 >= max(1,NLDA).
*
* NOUT (input) INTEGER
* The unit number for output.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NSUBS
PARAMETER ( NSUBS = 4 )
* ..
* .. Local Scalars ..
CHARACTER TRANS
CHARACTER*3 PATH
CHARACTER*6 CNAME
INTEGER I, IC, ICL, ILDA, IM, INFO, ISUB, ITRANS, LDB,
$ M, N, NRHS
REAL OPS, S1, S2, TIME, UNTIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER TRANSS( 3 )
CHARACTER*6 SUBNAM( NSUBS )
INTEGER LAVAL( 1 )
* ..
* .. External Functions ..
REAL SECOND, SMFLOP, SOPGB
EXTERNAL SECOND, SMFLOP, SOPGB
* ..
* .. External Subroutines ..
EXTERNAL ATIMCK, ATIMIN, CGTSL, CGTSV, CGTTRF, CGTTRS,
$ CTIMMG, SPRTBL
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Data statements ..
DATA SUBNAM / 'CGTTRF', 'CGTTRS', 'CGTSV ',
$ 'CGTSL ' /
DATA TRANSS / 'N', 'T', 'C' /
* ..
* .. Executable Statements ..
*
* Extract the timing request from the input line.
*
PATH( 1: 1 ) = 'Complex precision'
PATH( 2: 3 ) = 'GT'
CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( INFO.NE.0 )
$ GO TO 180
*
* Check that N <= LDA for the input values.
*
DO 10 ISUB = 2, NSUBS
IF( .NOT.TIMSUB( ISUB ) )
$ GO TO 10
CNAME = SUBNAM( ISUB )
CALL ATIMCK( 2, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
IF( INFO.GT.0 ) THEN
WRITE( NOUT, FMT = 9999 )CNAME
TIMSUB( ISUB ) = .FALSE.
END IF
10 CONTINUE
*
* Do for each value of M:
*
DO 150 IM = 1, NM
*
M = MVAL( IM )
N = MAX( M, 1 )
*
* Time CGTTRF
*
IF( TIMSUB( 1 ) ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
IC = 0
S1 = SECOND( )
20 CONTINUE
CALL CGTTRF( M, A, A( N ), A( 2*N ), A( 3*N-2 ), IWORK,
$ INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
GO TO 20
END IF
*
* Subtract the time used in CTIMMG.
*
ICL = 1
S1 = SECOND( )
30 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
GO TO 30
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
OPS = SOPGB( 'CGTTRF', M, M, 1, 1, IWORK )
RESLTS( 1, IM, 1, 1 ) = SMFLOP( OPS, TIME, INFO )
*
ELSE IF( TIMSUB( 2 ) ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
END IF
*
* Generate another matrix and factor it using CGTTRF so
* that the factored form can be used in timing the other
* routines.
*
IF( IC.NE.1 )
$ CALL CGTTRF( M, A, A( N ), A( 2*N ), A( 3*N-2 ), IWORK,
$ INFO )
*
* Time CGTTRS
*
IF( TIMSUB( 2 ) ) THEN
DO 80 ITRANS = 1, 3
TRANS = TRANSS( ITRANS )
IF( ITRANS.EQ.1 ) THEN
ISUB = 2
ELSE
ISUB = ITRANS + 3
END IF
DO 70 ILDA = 1, NLDA
LDB = LDAVAL( ILDA )
DO 60 I = 1, NNS
NRHS = NSVAL( I )
CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
IC = 0
S1 = SECOND( )
40 CONTINUE
CALL CGTTRS( TRANS, M, NRHS, A, A( N ), A( 2*N ),
$ A( 3*N-2 ), IWORK, B, LDB, INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
GO TO 40
END IF
*
* Subtract the time used in CTIMMG.
*
ICL = 1
S1 = SECOND( )
50 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
GO TO 50
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
OPS = SOPGB( 'CGTTRS', M, NRHS, 0, 0, IWORK )
RESLTS( I, IM, ILDA, ISUB ) = SMFLOP( OPS, TIME,
$ INFO )
60 CONTINUE
70 CONTINUE
80 CONTINUE
END IF
*
IF( TIMSUB( 3 ) ) THEN
DO 120 ILDA = 1, NLDA
LDB = LDAVAL( ILDA )
DO 110 I = 1, NNS
NRHS = NSVAL( I )
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
IC = 0
S1 = SECOND( )
90 CONTINUE
CALL CGTSV( M, NRHS, A, A( N ), A( 2*N ), B, LDB,
$ INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
GO TO 90
END IF
*
* Subtract the time used in CTIMMG.
*
ICL = 1
S1 = SECOND( )
100 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
GO TO 100
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
OPS = SOPGB( 'CGTSV ', M, NRHS, 0, 0, IWORK )
RESLTS( I, IM, ILDA, 3 ) = SMFLOP( OPS, TIME, INFO )
110 CONTINUE
120 CONTINUE
END IF
*
IF( TIMSUB( 4 ) ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
CALL CTIMMG( 0, M, 1, B, N, 0, 0 )
IC = 0
S1 = SECOND( )
130 CONTINUE
CALL CGTSL( M, A, A( N ), A( 2*N ), B, INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
CALL CTIMMG( 0, M, 1, B, LDB, 0, 0 )
GO TO 130
END IF
*
* Subtract the time used in CTIMMG.
*
ICL = 1
S1 = SECOND( )
140 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
CALL CTIMMG( 0, M, 1, B, LDB, 0, 0 )
GO TO 140
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
OPS = SOPGB( 'CGTSV ', M, 1, 0, 0, IWORK )
RESLTS( 1, IM, 1, 4 ) = SMFLOP( OPS, TIME, INFO )
END IF
150 CONTINUE
*
* Print a table of results for each timed routine.
*
DO 170 ISUB = 1, NSUBS
IF( .NOT.TIMSUB( ISUB ) )
$ GO TO 170
WRITE( NOUT, FMT = 9997 )SUBNAM( ISUB )
IF( NLDA.GT.1 .AND. ( TIMSUB( 2 ) .OR. TIMSUB( 3 ) ) ) THEN
DO 160 I = 1, NLDA
WRITE( NOUT, FMT = 9996 )I, LDAVAL( I )
160 CONTINUE
END IF
WRITE( NOUT, FMT = * )
IF( ISUB.EQ.1 ) THEN
CALL SPRTBL( ' ', 'N', 1, LAVAL, NM, MVAL, 1, RESLTS, LDR1,
$ LDR2, NOUT )
ELSE IF( ISUB.EQ.2 ) THEN
WRITE( NOUT, FMT = 9998 )'N'
CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
$ RESLTS( 1, 1, 1, 2 ), LDR1, LDR2, NOUT )
WRITE( NOUT, FMT = 9998 )'T'
CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
$ RESLTS( 1, 1, 1, 5 ), LDR1, LDR2, NOUT )
WRITE( NOUT, FMT = 9998 )'C'
CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
$ RESLTS( 1, 1, 1, 6 ), LDR1, LDR2, NOUT )
ELSE IF( ISUB.EQ.3 ) THEN
CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
$ RESLTS( 1, 1, 1, 3 ), LDR1, LDR2, NOUT )
ELSE IF( ISUB.EQ.4 ) THEN
CALL SPRTBL( ' ', 'N', 1, LAVAL, NM, MVAL, 1,
$ RESLTS( 1, 1, 1, 4 ), LDR1, LDR2, NOUT )
END IF
170 CONTINUE
*
180 CONTINUE
9999 FORMAT( 1X, A6, ' timing run not attempted', / )
9998 FORMAT( ' CGTTRS with TRANS = ''', A1, '''', / )
9997 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
9996 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
RETURN
*
* End of CTIMGT
*
END
|