File: ctimgt.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (364 lines) | stat: -rw-r--r-- 12,088 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
      SUBROUTINE CTIMGT( LINE, NM, MVAL, NNS, NSVAL, NLDA, LDAVAL,
     $                   TIMMIN, A, B, IWORK, RESLTS, LDR1, LDR2, LDR3,
     $                   NOUT )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            LDR1, LDR2, LDR3, NLDA, NM, NNS, NOUT
      REAL               TIMMIN
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), LDAVAL( * ), MVAL( * ), NSVAL( * )
      REAL               RESLTS( LDR1, LDR2, LDR3, * )
      COMPLEX            A( * ), B( * )
*     ..
*
*  Purpose
*  =======
*
*  CTIMGT times CGTTRF, -TRS, -SV, and -SL.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          The input line that requested this routine.  The first six
*          characters contain either the name of a subroutine or a
*          generic path name.  The remaining characters may be used to
*          specify the individual routines to be timed.  See ATIMIN for
*          a full description of the format of the input line.
*
*  NM      (input) INTEGER
*          The number of values of M contained in the vector MVAL.
*
*  MVAL    (input) INTEGER array, dimension (NM)
*          The values of the matrix size M.
*
*  NNS     (input) INTEGER
*          The number of values of NRHS contained in the vector NSVAL.
*
*  NSVAL   (input) INTEGER array, dimension (NNS)
*          The values of the number of right hand sides NRHS.
*
*  NLDA    (input) INTEGER
*          The number of values of LDA contained in the vector LDAVAL.
*
*  LDAVAL  (input) INTEGER array, dimension (NLDA)
*          The values of the leading dimension of the array A.
*
*  TIMMIN  (input) REAL
*          The minimum time a subroutine will be timed.
*
*  A       (workspace) COMPLEX array, dimension (NMAX*4)
*          where NMAX is the maximum value permitted for N.
*
*  B       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
*
*  IWORK   (workspace) INTEGER array, dimension (NMAX)
*
*  RESLTS  (output) REAL array, dimension
*                   (LDR1,LDR2,LDR3,NSUBS+1)
*          The timing results for each subroutine over the relevant
*          values of N.
*
*  LDR1    (input) INTEGER
*          The first dimension of RESLTS.  LDR1 >= 1.
*
*  LDR2    (input) INTEGER
*          The second dimension of RESLTS.  LDR2 >= max(1,NM).
*
*  LDR3    (input) INTEGER
*          The third dimension of RESLTS.  LDR3 >= max(1,NLDA).
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NSUBS
      PARAMETER          ( NSUBS = 4 )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANS
      CHARACTER*3        PATH
      CHARACTER*6        CNAME
      INTEGER            I, IC, ICL, ILDA, IM, INFO, ISUB, ITRANS, LDB,
     $                   M, N, NRHS
      REAL               OPS, S1, S2, TIME, UNTIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER          TRANSS( 3 )
      CHARACTER*6        SUBNAM( NSUBS )
      INTEGER            LAVAL( 1 )
*     ..
*     .. External Functions ..
      REAL               SECOND, SMFLOP, SOPGB
      EXTERNAL           SECOND, SMFLOP, SOPGB
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMCK, ATIMIN, CGTSL, CGTSV, CGTTRF, CGTTRS,
     $                   CTIMMG, SPRTBL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, REAL
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'CGTTRF', 'CGTTRS', 'CGTSV ',
     $                   'CGTSL ' /
      DATA               TRANSS / 'N', 'T', 'C' /
*     ..
*     .. Executable Statements ..
*
*     Extract the timing request from the input line.
*
      PATH( 1: 1 ) = 'Complex precision'
      PATH( 2: 3 ) = 'GT'
      CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
      IF( INFO.NE.0 )
     $   GO TO 180
*
*     Check that N <= LDA for the input values.
*
      DO 10 ISUB = 2, NSUBS
         IF( .NOT.TIMSUB( ISUB ) )
     $      GO TO 10
         CNAME = SUBNAM( ISUB )
         CALL ATIMCK( 2, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
         IF( INFO.GT.0 ) THEN
            WRITE( NOUT, FMT = 9999 )CNAME
            TIMSUB( ISUB ) = .FALSE.
         END IF
   10 CONTINUE
*
*     Do for each value of M:
*
      DO 150 IM = 1, NM
*
         M = MVAL( IM )
         N = MAX( M, 1 )
*
*        Time CGTTRF
*
         IF( TIMSUB( 1 ) ) THEN
            CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
            IC = 0
            S1 = SECOND( )
   20       CONTINUE
            CALL CGTTRF( M, A, A( N ), A( 2*N ), A( 3*N-2 ), IWORK,
     $                   INFO )
            S2 = SECOND( )
            TIME = S2 - S1
            IC = IC + 1
            IF( TIME.LT.TIMMIN ) THEN
               CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
               GO TO 20
            END IF
*
*           Subtract the time used in CTIMMG.
*
            ICL = 1
            S1 = SECOND( )
   30       CONTINUE
            S2 = SECOND( )
            UNTIME = S2 - S1
            ICL = ICL + 1
            IF( ICL.LE.IC ) THEN
               CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
               GO TO 30
            END IF
*
            TIME = ( TIME-UNTIME ) / REAL( IC )
            OPS = SOPGB( 'CGTTRF', M, M, 1, 1, IWORK )
            RESLTS( 1, IM, 1, 1 ) = SMFLOP( OPS, TIME, INFO )
*
         ELSE IF( TIMSUB( 2 ) ) THEN
            CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
         END IF
*
*        Generate another matrix and factor it using CGTTRF so
*        that the factored form can be used in timing the other
*        routines.
*
         IF( IC.NE.1 )
     $      CALL CGTTRF( M, A, A( N ), A( 2*N ), A( 3*N-2 ), IWORK,
     $                   INFO )
*
*        Time CGTTRS
*
         IF( TIMSUB( 2 ) ) THEN
            DO 80 ITRANS = 1, 3
               TRANS = TRANSS( ITRANS )
               IF( ITRANS.EQ.1 ) THEN
                  ISUB = 2
               ELSE
                  ISUB = ITRANS + 3
               END IF
               DO 70 ILDA = 1, NLDA
                  LDB = LDAVAL( ILDA )
                  DO 60 I = 1, NNS
                     NRHS = NSVAL( I )
                     CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                     IC = 0
                     S1 = SECOND( )
   40                CONTINUE
                     CALL CGTTRS( TRANS, M, NRHS, A, A( N ), A( 2*N ),
     $                            A( 3*N-2 ), IWORK, B, LDB, INFO )
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN ) THEN
                        CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                        GO TO 40
                     END IF
*
*                    Subtract the time used in CTIMMG.
*
                     ICL = 1
                     S1 = SECOND( )
   50                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
                     ICL = ICL + 1
                     IF( ICL.LE.IC ) THEN
                        CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                        GO TO 50
                     END IF
*
                     TIME = ( TIME-UNTIME ) / REAL( IC )
                     OPS = SOPGB( 'CGTTRS', M, NRHS, 0, 0, IWORK )
                     RESLTS( I, IM, ILDA, ISUB ) = SMFLOP( OPS, TIME,
     $                  INFO )
   60             CONTINUE
   70          CONTINUE
   80       CONTINUE
         END IF
*
         IF( TIMSUB( 3 ) ) THEN
            DO 120 ILDA = 1, NLDA
               LDB = LDAVAL( ILDA )
               DO 110 I = 1, NNS
                  NRHS = NSVAL( I )
                  CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
                  CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                  IC = 0
                  S1 = SECOND( )
   90             CONTINUE
                  CALL CGTSV( M, NRHS, A, A( N ), A( 2*N ), B, LDB,
     $                        INFO )
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN ) THEN
                     CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
                     CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                     GO TO 90
                  END IF
*
*                 Subtract the time used in CTIMMG.
*
                  ICL = 1
                  S1 = SECOND( )
  100             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
                  ICL = ICL + 1
                  IF( ICL.LE.IC ) THEN
                     CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
                     CALL CTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                     GO TO 100
                  END IF
*
                  TIME = ( TIME-UNTIME ) / REAL( IC )
                  OPS = SOPGB( 'CGTSV ', M, NRHS, 0, 0, IWORK )
                  RESLTS( I, IM, ILDA, 3 ) = SMFLOP( OPS, TIME, INFO )
  110          CONTINUE
  120       CONTINUE
         END IF
*
         IF( TIMSUB( 4 ) ) THEN
            CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
            CALL CTIMMG( 0, M, 1, B, N, 0, 0 )
            IC = 0
            S1 = SECOND( )
  130       CONTINUE
            CALL CGTSL( M, A, A( N ), A( 2*N ), B, INFO )
            S2 = SECOND( )
            TIME = S2 - S1
            IC = IC + 1
            IF( TIME.LT.TIMMIN ) THEN
               CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
               CALL CTIMMG( 0, M, 1, B, LDB, 0, 0 )
               GO TO 130
            END IF
*
*           Subtract the time used in CTIMMG.
*
            ICL = 1
            S1 = SECOND( )
  140       CONTINUE
            S2 = SECOND( )
            UNTIME = S2 - S1
            ICL = ICL + 1
            IF( ICL.LE.IC ) THEN
               CALL CTIMMG( 14, M, M, A, 3*N, 0, 0 )
               CALL CTIMMG( 0, M, 1, B, LDB, 0, 0 )
               GO TO 140
            END IF
*
            TIME = ( TIME-UNTIME ) / REAL( IC )
            OPS = SOPGB( 'CGTSV ', M, 1, 0, 0, IWORK )
            RESLTS( 1, IM, 1, 4 ) = SMFLOP( OPS, TIME, INFO )
         END IF
  150 CONTINUE
*
*     Print a table of results for each timed routine.
*
      DO 170 ISUB = 1, NSUBS
         IF( .NOT.TIMSUB( ISUB ) )
     $      GO TO 170
         WRITE( NOUT, FMT = 9997 )SUBNAM( ISUB )
         IF( NLDA.GT.1 .AND. ( TIMSUB( 2 ) .OR. TIMSUB( 3 ) ) ) THEN
            DO 160 I = 1, NLDA
               WRITE( NOUT, FMT = 9996 )I, LDAVAL( I )
  160       CONTINUE
         END IF
         WRITE( NOUT, FMT = * )
         IF( ISUB.EQ.1 ) THEN
            CALL SPRTBL( ' ', 'N', 1, LAVAL, NM, MVAL, 1, RESLTS, LDR1,
     $                   LDR2, NOUT )
         ELSE IF( ISUB.EQ.2 ) THEN
            WRITE( NOUT, FMT = 9998 )'N'
            CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
     $                   RESLTS( 1, 1, 1, 2 ), LDR1, LDR2, NOUT )
            WRITE( NOUT, FMT = 9998 )'T'
            CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
     $                   RESLTS( 1, 1, 1, 5 ), LDR1, LDR2, NOUT )
            WRITE( NOUT, FMT = 9998 )'C'
            CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
     $                   RESLTS( 1, 1, 1, 6 ), LDR1, LDR2, NOUT )
         ELSE IF( ISUB.EQ.3 ) THEN
            CALL SPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
     $                   RESLTS( 1, 1, 1, 3 ), LDR1, LDR2, NOUT )
         ELSE IF( ISUB.EQ.4 ) THEN
            CALL SPRTBL( ' ', 'N', 1, LAVAL, NM, MVAL, 1,
     $                   RESLTS( 1, 1, 1, 4 ), LDR1, LDR2, NOUT )
         END IF
  170 CONTINUE
*
  180 CONTINUE
 9999 FORMAT( 1X, A6, ' timing run not attempted', / )
 9998 FORMAT( ' CGTTRS with TRANS = ''', A1, '''', / )
 9997 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
 9996 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
      RETURN
*
*     End of CTIMGT
*
      END