File: ctimmg.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (418 lines) | stat: -rw-r--r-- 12,404 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
      SUBROUTINE CTIMMG( IFLAG, M, N, A, LDA, KL, KU )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            IFLAG, KL, KU, LDA, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  CTIMMG generates a complex test matrix whose type is given by IFLAG.
*  All the matrices are Toeplitz (constant along a diagonal), with
*  random elements on each diagonal.
*
*  Arguments
*  =========
*
*  IFLAG   (input) INTEGER
*          The type of matrix to be generated.
*          = 0 or 1:   General matrix
*          = 2 or -2:  General banded matrix
*          = 3 or -3:  Hermitian positive definite matrix
*          = 4 or -4:  Hermitian positive definite packed
*          = 5 or -5:  Hermitian positive definite banded
*          = 6 or -6:  Hermitian indefinite matrix
*          = 7 or -7:  Hermitian indefinite packed
*          = 8 or -8:  Symmetric indefinite matrix
*          = 9 or -9:  Symmetric indefinite packed
*          = 10 or -10:  Symmetric indefinite banded
*          = 11 or -11:  Triangular matrix
*          = 12 or -12:  Triangular packed
*          = 13 or -13:  Triangular banded
*          = 14:         General tridiagonal
*          For Hermitian, symmetric, or triangular matrices, IFLAG > 0
*          indicates upper triangular storage and IFLAG < 0 indicates
*          lower triangular storage.
*
*  M       (input) INTEGER
*          The number of rows of the matrix to be generated.
*
*  N       (input) INTEGER
*          The number of columns of the matrix to be generated.
*
*  A       (output) COMPLEX array, dimension (LDA,N)
*          The generated matrix.
*
*          If the absolute value of IFLAG is 1, 3, 6, or 8, the leading
*          M x N (or N x N) subblock is used to store the matrix.
*          If the matrix is symmetric, only the upper or lower triangle
*          of this block is referenced.
*
*          If the absolute value of IFLAG is 4, 7, or 9, the matrix is
*          Hermitian or symmetric and packed storage is used for the
*          upper or lower triangle.  The triangular matrix is stored
*          columnwise as a linear array, and the array A is treated as a
*          vector of length LDA.  LDA must be set to at least N*(N+1)/2.
*
*          If the absolute value of IFLAG is 2 or 5, the matrix is
*          returned in band format.  The columns of the matrix are
*          specified in the columns of A and the diagonals of the
*          matrix are specified in the rows of A, with the leading
*          diagonal in row
*              KL + KU + 1,  if IFLAG = 2
*              KU + 1,       if IFLAG = 5 or -2
*              1,            if IFLAG = -5
*          If IFLAG = 2, the first KL rows are not used to leave room
*          for pivoting in CGBTRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  If the generated matrix is
*          packed, LDA >= N*(N+1)/2, otherwise LDA >= max(1,M).
*
*  KL      (input) INTEGER
*          The number of subdiagonals if IFLAG = 2, 5, or -5.
*
*  KU      (input) INTEGER
*          The number of superdiagonals if IFLAG = 2, 5, or -5.
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J, JJ, JN, K, MJ, MU
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, REAL
*     ..
*     .. External Functions ..
      COMPLEX            CLARND
      EXTERNAL           CLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CLARNV
*     ..
*     .. Data statements ..
      DATA               ISEED / 0, 0, 0, 1 /
*     ..
*     .. Executable Statements ..
*
      IF( M.LE.0 .OR. N.LE.0 ) THEN
         RETURN
*
      ELSE IF( IFLAG.EQ.0 .OR. IFLAG.EQ.1 ) THEN
*
*        General matrix
*
*        Set first column and row to random values.
*
         CALL CLARNV( 2, ISEED, M, A( 1, 1 ) )
         DO 10 J = 2, N, M
            MJ = MIN( M, N-J+1 )
            CALL CLARNV( 2, ISEED, MJ, A( 1, J ) )
            IF( MJ.GT.1 )
     $         CALL CCOPY( MJ-1, A( 2, J ), 1, A( 1, J+1 ), LDA )
   10    CONTINUE
*
*        Fill in the rest of the matrix.
*
         DO 30 J = 2, N
            DO 20 I = 2, M
               A( I, J ) = A( I-1, J-1 )
   20       CONTINUE
   30    CONTINUE
*
      ELSE IF( IFLAG.EQ.2 .OR. IFLAG.EQ.-2 ) THEN
*
*        General band matrix
*
         IF( IFLAG.EQ.2 ) THEN
            K = KL + KU + 1
         ELSE
            K = KU + 1
         END IF
         CALL CLARNV( 2, ISEED, MIN( M, KL+1 ), A( K, 1 ) )
         MU = MIN( N-1, KU )
         CALL CLARNV( 2, ISEED, MU+1, A( K-MU, N ) )
         DO 40 J = 2, N - 1
            MU = MIN( J-1, KU )
            CALL CCOPY( MU, A( K-MU, N ), 1, A( K-MU, J ), 1 )
            CALL CCOPY( MIN( M-J+1, KL+1 ), A( K, 1 ), 1, A( K, J ), 1 )
   40    CONTINUE
*
      ELSE IF( IFLAG.EQ.3 ) THEN
*
*        Hermitian positive definite, upper triangle
*
         CALL CLARNV( 2, ISEED, N-1, A( 1, N ) )
         A( N, N ) = REAL( N )
         DO 50 J = N - 1, 1, -1
            CALL CCOPY( J, A( N-J+1, N ), 1, A( 1, J ), 1 )
   50    CONTINUE
*
      ELSE IF( IFLAG.EQ.-3 ) THEN
*
*        Hermitian positive definite, lower triangle
*
         A( 1, 1 ) = REAL( N )
         IF( N.GT.1 )
     $      CALL CLARNV( 2, ISEED, N-1, A( 2, 1 ) )
         DO 60 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( J, J ), 1 )
   60    CONTINUE
*
      ELSE IF( IFLAG.EQ.4 ) THEN
*
*        Hermitian positive definite packed, upper triangle
*
         JN = ( N-1 )*N / 2 + 1
         CALL CLARNV( 2, ISEED, N-1, A( JN, 1 ) )
         A( JN+N-1, 1 ) = REAL( N )
         JJ = JN
         DO 70 J = N - 1, 1, -1
            JJ = JJ - J
            JN = JN + 1
            CALL CCOPY( J, A( JN, 1 ), 1, A( JJ, 1 ), 1 )
   70    CONTINUE
*
      ELSE IF( IFLAG.EQ.-4 ) THEN
*
*        Hermitian positive definite packed, lower triangle
*
         A( 1, 1 ) = REAL( N )
         IF( N.GT.1 )
     $      CALL CLARNV( 2, ISEED, N-1, A( 2, 1 ) )
         JJ = N + 1
         DO 80 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( JJ, 1 ), 1 )
            JJ = JJ + N - J + 1
   80    CONTINUE
*
      ELSE IF( IFLAG.EQ.5 ) THEN
*
*        Hermitian positive definite banded, upper triangle
*
         K = KL
         MU = MIN( N-1, K )
         CALL CLARNV( 2, ISEED, MU, A( K+1-MU, N ) )
         A( K+1, N ) = REAL( N )
         DO 90 J = N - 1, 1, -1
            MU = MIN( J, K+1 )
            CALL CCOPY( MU, A( K+2-MU, N ), 1, A( K+2-MU, J ), 1 )
   90    CONTINUE
*
      ELSE IF( IFLAG.EQ.-5 ) THEN
*
*        Hermitian positive definite banded, lower triangle
*
         K = KL
         A( 1, 1 ) = REAL( N )
         CALL CLARNV( 2, ISEED, MIN( N-1, K ), A( 2, 1 ) )
         DO 100 J = 2, N
            CALL CCOPY( MIN( N-J+1, K+1 ), A( 1, 1 ), 1, A( 1, J ), 1 )
  100    CONTINUE
*
      ELSE IF( IFLAG.EQ.6 ) THEN
*
*        Hermitian indefinite, upper triangle
*
         CALL CLARNV( 2, ISEED, N, A( 1, N ) )
         A( N, N ) = REAL( A( N, N ) )
         DO 110 J = N - 1, 1, -1
            CALL CCOPY( J, A( N-J+1, N ), 1, A( 1, J ), 1 )
  110    CONTINUE
*
      ELSE IF( IFLAG.EQ.-6 ) THEN
*
*        Hermitian indefinite, lower triangle
*
         CALL CLARNV( 2, ISEED, N, A( 1, 1 ) )
         A( 1, 1 ) = REAL( A( 1, 1 ) )
         DO 120 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( J, J ), 1 )
  120    CONTINUE
*
      ELSE IF( IFLAG.EQ.7 ) THEN
*
*        Hermitian indefinite packed, upper triangle
*
         JN = ( N-1 )*N / 2 + 1
         CALL CLARNV( 2, ISEED, N, A( JN, 1 ) )
         A( JN+N-1, 1 ) = REAL( A( JN+N-1, 1 ) )
         JJ = JN
         DO 130 J = N - 1, 1, -1
            JJ = JJ - J
            JN = JN + 1
            CALL CCOPY( J, A( JN, 1 ), 1, A( JJ, 1 ), 1 )
  130    CONTINUE
*
      ELSE IF( IFLAG.EQ.-7 ) THEN
*
*        Hermitian indefinite packed, lower triangle
*
         CALL CLARNV( 2, ISEED, N, A( 1, 1 ) )
         A( 1, 1 ) = REAL( A( 1, 1 ) )
         JJ = N + 1
         DO 140 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( JJ, 1 ), 1 )
            JJ = JJ + N - J + 1
  140    CONTINUE
*
      ELSE IF( IFLAG.EQ.8 ) THEN
*
*        Symmetric indefinite, upper triangle
*
         CALL CLARNV( 2, ISEED, N, A( 1, N ) )
         DO 150 J = N - 1, 1, -1
            CALL CCOPY( J, A( N-J+1, N ), 1, A( 1, J ), 1 )
  150    CONTINUE
*
      ELSE IF( IFLAG.EQ.-8 ) THEN
*
*        Symmetric indefinite, lower triangle
*
         CALL CLARNV( 2, ISEED, N, A( 1, 1 ) )
         DO 160 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( J, J ), 1 )
  160    CONTINUE
*
      ELSE IF( IFLAG.EQ.9 ) THEN
*
*        Symmetric indefinite packed, upper triangle
*
         JN = ( N-1 )*N / 2 + 1
         CALL CLARNV( 2, ISEED, N, A( JN, 1 ) )
         JJ = JN
         DO 170 J = N - 1, 1, -1
            JJ = JJ - J
            JN = JN + 1
            CALL CCOPY( J, A( JN, 1 ), 1, A( JJ, 1 ), 1 )
  170    CONTINUE
*
      ELSE IF( IFLAG.EQ.-9 ) THEN
*
*        Symmetric indefinite packed, lower triangle
*
         CALL CLARNV( 2, ISEED, N, A( 1, 1 ) )
         JJ = N + 1
         DO 180 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( JJ, 1 ), 1 )
            JJ = JJ + N - J + 1
  180    CONTINUE
*
      ELSE IF( IFLAG.EQ.10 ) THEN
*
*        Symmetric indefinite banded, upper triangle
*
         K = KL
         MU = MIN( N, K+1 )
         CALL CLARNV( 2, ISEED, MU, A( K+2-MU, N ) )
         DO 190 J = N - 1, 1, -1
            MU = MIN( J, K+1 )
            CALL CCOPY( MU, A( K+2-MU, N ), 1, A( K+2-MU, J ), 1 )
  190    CONTINUE
*
      ELSE IF( IFLAG.EQ.-10 ) THEN
*
*        Symmetric indefinite banded, lower triangle
*
         K = KL
         CALL CLARNV( 2, ISEED, MIN( N, K+1 ), A( 1, 1 ) )
         DO 200 J = 2, N
            CALL CCOPY( MIN( N-J+1, K+1 ), A( 1, 1 ), 1, A( 1, J ), 1 )
  200    CONTINUE
*
      ELSE IF( IFLAG.EQ.11 ) THEN
*
*        Upper triangular
*
         CALL CLARNV( 2, ISEED, N-1, A( 1, N ) )
         A( N, N ) = REAL( N )*CLARND( 5, ISEED )
         DO 210 J = N - 1, 1, -1
            CALL CCOPY( J, A( N-J+1, N ), 1, A( 1, J ), 1 )
  210    CONTINUE
*
      ELSE IF( IFLAG.EQ.-11 ) THEN
*
*        Lower triangular
*
         A( 1, 1 ) = REAL( N )*CLARND( 5, ISEED )
         IF( N.GT.1 )
     $      CALL CLARNV( 2, ISEED, N-1, A( 2, 1 ) )
         DO 220 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( J, J ), 1 )
  220    CONTINUE
*
      ELSE IF( IFLAG.EQ.12 ) THEN
*
*        Upper triangular packed
*
         JN = ( N-1 )*N / 2 + 1
         CALL CLARNV( 2, ISEED, N-1, A( JN, 1 ) )
         A( JN+N-1, 1 ) = REAL( N )*CLARND( 5, ISEED )
         JJ = JN
         DO 230 J = N - 1, 1, -1
            JJ = JJ - J
            JN = JN + 1
            CALL CCOPY( J, A( JN, 1 ), 1, A( JJ, 1 ), 1 )
  230    CONTINUE
*
      ELSE IF( IFLAG.EQ.-12 ) THEN
*
*        Lower triangular packed
*
         A( 1, 1 ) = REAL( N )*CLARND( 5, ISEED )
         IF( N.GT.1 )
     $      CALL CLARNV( 2, ISEED, N-1, A( 2, 1 ) )
         JJ = N + 1
         DO 240 J = 2, N
            CALL CCOPY( N-J+1, A( 1, 1 ), 1, A( JJ, 1 ), 1 )
            JJ = JJ + N - J + 1
  240    CONTINUE
*
      ELSE IF( IFLAG.EQ.13 ) THEN
*
*        Upper triangular banded
*
         K = KL
         MU = MIN( N-1, K )
         CALL CLARNV( 2, ISEED, MU, A( K+1-MU, N ) )
         A( K+1, N ) = REAL( K+1 )*CLARND( 5, ISEED )
         DO 250 J = N - 1, 1, -1
            MU = MIN( J, K+1 )
            CALL CCOPY( MU, A( K+2-MU, N ), 1, A( K+2-MU, J ), 1 )
  250    CONTINUE
*
      ELSE IF( IFLAG.EQ.-13 ) THEN
*
*        Lower triangular banded
*
         K = KL
         A( 1, 1 ) = REAL( K+1 )*CLARND( 5, ISEED )
         IF( N.GT.1 )
     $      CALL CLARNV( 2, ISEED, MIN( N-1, K ), A( 2, 1 ) )
         DO 260 J = 2, N
            CALL CCOPY( MIN( N-J+1, K+1 ), A( 1, 1 ), 1, A( 1, J ), 1 )
  260    CONTINUE
*
      ELSE IF( IFLAG.EQ.14 ) THEN
*
*        General tridiagonal
*
         CALL CLARNV( 2, ISEED, 3*N-2, A )
      END IF
*
      RETURN
*
*     End of CTIMMG
*
      END