File: ctimmv.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (269 lines) | stat: -rw-r--r-- 8,450 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
      SUBROUTINE CTIMMV( VNAME, NN, NVAL, NK, KVAL, NLDA, LDAVAL,
     $                   TIMMIN, A, LB, B, C, RESLTS, LDR1, LDR2, NOUT )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER*( * )    VNAME
      INTEGER            LB, LDR1, LDR2, NK, NLDA, NN, NOUT
      REAL               TIMMIN
*     ..
*     .. Array Arguments ..
      INTEGER            KVAL( * ), LDAVAL( * ), NVAL( * )
      REAL               RESLTS( LDR1, LDR2, * )
      COMPLEX            A( * ), B( * ), C( * )
*     ..
*
*  Purpose
*  =======
*
*  CTIMMV times individual BLAS 2 routines.
*
*  Arguments
*  =========
*
*  VNAME   (input) CHARACTER*(*)
*          The name of the Level 2 BLAS routine to be timed.
*
*  NN      (input) INTEGER
*          The number of values of N contained in the vector NVAL.
*
*  NVAL    (input) INTEGER array, dimension (NN)
*          The values of the matrix dimension N.
*
*  NK      (input) INTEGER
*          The number of values of K contained in the vector KVAL.
*
*  KVAL    (input) INTEGER array, dimension (NK)
*          The values of the bandwidth K.
*
*  NLDA    (input) INTEGER
*          The number of values of LDA contained in the vector LDAVAL.
*
*  LDAVAL  (input) INTEGER array, dimension (NLDA)
*          The values of the leading dimension of the array A.
*
*  TIMMIN  (input) REAL
*          The minimum time a subroutine will be timed.
*
*  A       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
*             where LDAMAX and NMAX are the maximum values permitted
*             for LDA and N.
*
*  LB      (input) INTEGER
*          The length of B and C, needed when timing CGBMV.  If timing
*          CGEMV, LB >= LDAMAX*NMAX.
*
*  B       (workspace) COMPLEX array, dimension (LB)
*
*  C       (workspace) COMPLEX array, dimension (LB)
*
*  RESLTS  (output) REAL array, dimension (LDR1,LDR2,NLDA)
*          The timing results for each subroutine over the relevant
*          values of N and LDA.
*
*  LDR1    (input) INTEGER
*          The first dimension of RESLTS.  LDR1 >= max(1,NK).
*
*  LDR2    (input) INTEGER
*          The second dimension of RESLTS.  LDR2 >= max(1,NN).
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NSUBS
      COMPLEX            ONE
      PARAMETER          ( NSUBS = 2, ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          LAB1, LAB2
      CHARACTER*6        CNAME
      INTEGER            I, IB, IC, ICL, IK, ILDA, IN, INFO, ISUB, K,
     $                   KL, KU, LDA, LDB, N, NRHS
      REAL               OPS, S1, S2, TIME, UNTIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER*6        SUBNAM( NSUBS )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, LSAMEN
      REAL               SECOND, SMFLOP, SOPBL2
      EXTERNAL           LSAME, LSAMEN, SECOND, SMFLOP, SOPBL2
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMCK, CGBMV, CGEMV, CTIMMG, SPRTBL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'CGEMV ', 'CGBMV ' /
*     ..
*     .. Executable Statements ..
*
      CNAME = VNAME
      DO 10 ISUB = 1, NSUBS
         TIMSUB( ISUB ) = LSAMEN( 6, CNAME, SUBNAM( ISUB ) )
         IF( TIMSUB( ISUB ) )
     $      GO TO 20
   10 CONTINUE
      WRITE( NOUT, FMT = 9999 )CNAME
      GO TO 150
   20 CONTINUE
*
*     Check that N or K <= LDA for the input values.
*
      IF( LSAME( CNAME( 3: 3 ), 'B' ) ) THEN
         CALL ATIMCK( 0, CNAME, NK, KVAL, NLDA, LDAVAL, NOUT, INFO )
         LAB1 = 'M'
         LAB2 = 'K'
      ELSE
         CALL ATIMCK( 2, CNAME, NN, NVAL, NLDA, LDAVAL, NOUT, INFO )
         LAB1 = ' '
         LAB2 = 'N'
      END IF
      IF( INFO.GT.0 ) THEN
         WRITE( NOUT, FMT = 9998 )CNAME
         GO TO 150
      END IF
*
*     Print the table header on unit NOUT.
*
      WRITE( NOUT, FMT = 9997 )VNAME
      IF( NLDA.EQ.1 ) THEN
         WRITE( NOUT, FMT = 9996 )LDAVAL( 1 )
      ELSE
         DO 30 I = 1, NLDA
            WRITE( NOUT, FMT = 9995 )I, LDAVAL( I )
   30    CONTINUE
      END IF
      WRITE( NOUT, FMT = * )
*
*     Time CGEMV
*
      IF( TIMSUB( 1 ) ) THEN
         DO 80 ILDA = 1, NLDA
            LDA = LDAVAL( ILDA )
            DO 70 IN = 1, NN
               N = NVAL( IN )
               NRHS = N
               LDB = LDA
               CALL CTIMMG( 1, N, N, A, LDA, 0, 0 )
               CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 )
               CALL CTIMMG( 1, N, NRHS, C, LDB, 0, 0 )
               IC = 0
               S1 = SECOND( )
   40          CONTINUE
               IB = 1
               DO 50 I = 1, NRHS
                  CALL CGEMV( 'No transpose', N, N, ONE, A, LDA,
     $                        B( IB ), 1, ONE, C( IB ), 1 )
                  IB = IB + LDB
   50          CONTINUE
               S2 = SECOND( )
               TIME = S2 - S1
               IC = IC + 1
               IF( TIME.LT.TIMMIN ) THEN
                  CALL CTIMMG( 1, N, NRHS, C, LDB, 0, 0 )
                  GO TO 40
               END IF
*
*              Subtract the time used in CTIMMG.
*
               ICL = 1
               S1 = SECOND( )
   60          CONTINUE
               S2 = SECOND( )
               UNTIME = S2 - S1
               ICL = ICL + 1
               IF( ICL.LE.IC ) THEN
                  CALL CTIMMG( 1, N, NRHS, C, LDB, 0, 0 )
                  GO TO 60
               END IF
*
               TIME = ( TIME-UNTIME ) / REAL( IC )
               OPS = NRHS*SOPBL2( 'CGEMV ', N, N, 0, 0 )
               RESLTS( 1, IN, ILDA ) = SMFLOP( OPS, TIME, 0 )
   70       CONTINUE
   80    CONTINUE
*
         CALL SPRTBL( LAB1, LAB2, 1, NVAL, NN, NVAL, NLDA, RESLTS, LDR1,
     $                LDR2, NOUT )
*
      ELSE IF( TIMSUB( 2 ) ) THEN
*
*        Time CGBMV
*
         DO 140 ILDA = 1, NLDA
            LDA = LDAVAL( ILDA )
            DO 130 IN = 1, NN
               N = NVAL( IN )
               DO 120 IK = 1, NK
                  K = MIN( N-1, MAX( 0, KVAL( IK ) ) )
                  KL = K
                  KU = K
                  LDB = N
                  CALL CTIMMG( 2, N, N, A, LDA, KL, KU )
                  NRHS = MIN( K, LB / LDB )
                  CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 )
                  CALL CTIMMG( 1, N, NRHS, C, LDB, 0, 0 )
                  IC = 0
                  S1 = SECOND( )
   90             CONTINUE
                  IB = 1
                  DO 100 I = 1, NRHS
                     CALL CGBMV( 'No transpose', N, N, KL, KU, ONE,
     $                           A( KU+1 ), LDA, B( IB ), 1, ONE,
     $                           C( IB ), 1 )
                     IB = IB + LDB
  100             CONTINUE
                  S2 = SECOND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN ) THEN
                     CALL CTIMMG( 1, N, NRHS, C, LDB, 0, 0 )
                     GO TO 90
                  END IF
*
*                 Subtract the time used in CTIMMG.
*
                  ICL = 1
                  S1 = SECOND( )
  110             CONTINUE
                  S2 = SECOND( )
                  UNTIME = S2 - S1
                  ICL = ICL + 1
                  IF( ICL.LE.IC ) THEN
                     CALL CTIMMG( 1, N, NRHS, C, LDB, 0, 0 )
                     GO TO 110
                  END IF
*
                  TIME = ( TIME-UNTIME ) / REAL( IC )
                  OPS = NRHS*SOPBL2( 'CGBMV ', N, N, KL, KU )
                  RESLTS( IN, IK, ILDA ) = SMFLOP( OPS, TIME, 0 )
  120          CONTINUE
  130       CONTINUE
  140    CONTINUE
*
         CALL SPRTBL( LAB1, LAB2, NN, NVAL, NK, KVAL, NLDA, RESLTS,
     $                LDR1, LDR2, NOUT )
      END IF
*
  150 CONTINUE
 9999 FORMAT( 1X, A6, ':  Unrecognized path or subroutine name', / )
 9998 FORMAT( 1X, A6, ' timing run not attempted', / )
 9997 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
 9996 FORMAT( 5X, 'with LDA = ', I5 )
 9995 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
      RETURN
*
*     End of CTIMMV
*
      END