File: ctimpb.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (315 lines) | stat: -rw-r--r-- 10,646 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
      SUBROUTINE CTIMPB( LINE, NN, NVAL, NK, KVAL, NNS, NSVAL, NNB,
     $                   NBVAL, NLDA, LDAVAL, TIMMIN, A, B, IWORK,
     $                   RESLTS, LDR1, LDR2, LDR3, NOUT )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            LDR1, LDR2, LDR3, NK, NLDA, NN, NNB, NNS, NOUT
      REAL               TIMMIN
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), KVAL( * ), LDAVAL( * ), NBVAL( * ),
     $                   NSVAL( * ), NVAL( * )
      REAL               RESLTS( LDR1, LDR2, LDR3, * )
      COMPLEX            A( * ), B( * )
*     ..
*
*  Purpose
*  =======
*
*  CTIMPB times CPBTRF and -TRS.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          The input line that requested this routine.  The first six
*          characters contain either the name of a subroutine or a
*          generic path name.  The remaining characters may be used to
*          specify the individual routines to be timed.  See ATIMIN for
*          a full description of the format of the input line.
*
*  NN      (input) INTEGER
*          The number of values of N contained in the vector NVAL.
*
*  NVAL    (input) INTEGER array, dimension (NN)
*          The values of the matrix size N.
*
*  NK      (input) INTEGER
*          The number of values of K contained in the vector KVAL.
*
*  KVAL    (input) INTEGER array, dimension (NK)
*          The values of the band width K.
*
*  NNS     (input) INTEGER
*          The number of values of NRHS contained in the vector NSVAL.
*
*  NSVAL   (input) INTEGER array, dimension (NNS)
*          The values of the number of right hand sides NRHS.
*
*  NNB     (input) INTEGER
*          The number of values of NB contained in the vector NBVAL.
*
*  NBVAL   (input) INTEGER array, dimension (NNB)
*          The values of the blocksize NB.
*
*  NLDA    (input) INTEGER
*          The number of values of LDA contained in the vector LDAVAL.
*
*  LDAVAL  (input) INTEGER array, dimension (NLDA)
*          The values of the leading dimension of the array A.
*
*  TIMMIN  (input) REAL
*          The minimum time a subroutine will be timed.
*
*  A       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
*          where LDAMAX and NMAX are the maximum values permitted
*          for LDA and N.
*
*  B       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
*
*  IWORK   (workspace) INTEGER array, dimension (NMAX)
*
*  RESLTS  (output) REAL array, dimension
*                   (LDR1,LDR2,LDR3,NSUBS)
*          The timing results for each subroutine over the relevant
*          values of N, K, NB, and LDA.
*
*  LDR1    (input) INTEGER
*          The first dimension of RESLTS.  LDR1 >= max(4,NNB).
*
*  LDR2    (input) INTEGER
*          The second dimension of RESLTS.  LDR2 >= max(1,NK).
*
*  LDR3    (input) INTEGER
*          The third dimension of RESLTS.  LDR3 >= max(1,2*NLDA).
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NSUBS
      PARAMETER          ( NSUBS = 2 )
*     ..
*     .. Local Scalars ..
      CHARACTER          UPLO
      CHARACTER*3        PATH
      CHARACTER*6        CNAME
      INTEGER            I, I3, IC, ICL, IK, ILDA, IN, INB, INFO, ISUB,
     $                   IUPLO, K, LDA, LDB, MAT, N, NB, NRHS
      REAL               OPS, S1, S2, TIME, UNTIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER          UPLOS( 2 )
      CHARACTER*6        SUBNAM( NSUBS )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SECOND, SMFLOP, SOPLA
      EXTERNAL           LSAME, SECOND, SMFLOP, SOPLA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMCK, ATIMIN, CPBTRF, CPBTRS, CTIMMG, SPRTBL,
     $                   XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Data statements ..
      DATA               UPLOS / 'U', 'L' /
      DATA               SUBNAM / 'CPBTRF', 'CPBTRS' /
*     ..
*     .. Executable Statements ..
*
*     Extract the timing request from the input line.
*
      PATH( 1: 1 ) = 'Complex precision'
      PATH( 2: 3 ) = 'PB'
      CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
      IF( INFO.NE.0 )
     $   GO TO 140
*
*     Check that K+1 <= LDA for the input values.
*
      CNAME = LINE( 1: 6 )
      CALL ATIMCK( 0, CNAME, NK, KVAL, NLDA, LDAVAL, NOUT, INFO )
      IF( INFO.GT.0 ) THEN
         WRITE( NOUT, FMT = 9999 )CNAME
         GO TO 140
      END IF
*
*     Do for each value of the matrix size N:
*
      DO 130 IN = 1, NN
         N = NVAL( IN )
*
*        Do first for UPLO = 'U', then for UPLO = 'L'
*
         DO 90 IUPLO = 1, 2
            UPLO = UPLOS( IUPLO )
            IF( LSAME( UPLO, 'U' ) ) THEN
               MAT = 5
            ELSE
               MAT = -5
            END IF
*
*           Do for each value of LDA:
*
            DO 80 ILDA = 1, NLDA
               LDA = LDAVAL( ILDA )
               I3 = ( IUPLO-1 )*NLDA + ILDA
*
*              Do for each value of the band width K:
*
               DO 70 IK = 1, NK
                  K = KVAL( IK )
                  K = MAX( 0, MIN( K, N-1 ) )
*
*                 Time CPBTRF
*
                  IF( TIMSUB( 1 ) ) THEN
*
*                    Do for each value of NB in NBVAL.  Only CPBTRF is
*                    timed in this loop since the other routines are
*                    independent of NB.
*
                     DO 30 INB = 1, NNB
                        NB = NBVAL( INB )
                        CALL XLAENV( 1, NB )
                        CALL CTIMMG( MAT, N, N, A, LDA, K, K )
                        IC = 0
                        S1 = SECOND( )
   10                   CONTINUE
                        CALL CPBTRF( UPLO, N, K, A, LDA, INFO )
                        S2 = SECOND( )
                        TIME = S2 - S1
                        IC = IC + 1
                        IF( TIME.LT.TIMMIN ) THEN
                           CALL CTIMMG( MAT, N, N, A, LDA, K, K )
                           GO TO 10
                        END IF
*
*                       Subtract the time used in CTIMMG.
*
                        ICL = 1
                        S1 = SECOND( )
   20                   CONTINUE
                        CALL CTIMMG( MAT, N, N, A, LDA, K, K )
                        S2 = SECOND( )
                        UNTIME = S2 - S1
                        ICL = ICL + 1
                        IF( ICL.LE.IC )
     $                     GO TO 20
*
                        TIME = ( TIME-UNTIME ) / REAL( IC )
                        OPS = SOPLA( 'CPBTRF', N, N, K, K, NB )
                        RESLTS( INB, IK, I3, 1 ) = SMFLOP( OPS, TIME,
     $                     INFO )
   30                CONTINUE
                  ELSE
                     IC = 0
                     CALL CTIMMG( MAT, N, N, A, LDA, K, K )
                  END IF
*
*                 Generate another matrix and factor it using CPBTRF so
*                 that the factored form can be used in timing the other
*                 routines.
*
                  NB = 1
                  CALL XLAENV( 1, NB )
                  IF( IC.NE.1 )
     $               CALL CPBTRF( UPLO, N, K, A, LDA, INFO )
*
*                 Time CPBTRS
*
                  IF( TIMSUB( 2 ) ) THEN
                     DO 60 I = 1, NNS
                        NRHS = NSVAL( I )
                        LDB = N
                        CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 )
                        IC = 0
                        S1 = SECOND( )
   40                   CONTINUE
                        CALL CPBTRS( UPLO, N, K, NRHS, A, LDA, B, LDB,
     $                               INFO )
                        S2 = SECOND( )
                        TIME = S2 - S1
                        IC = IC + 1
                        IF( TIME.LT.TIMMIN ) THEN
                           CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 )
                           GO TO 40
                        END IF
*
*                       Subtract the time used in CTIMMG.
*
                        ICL = 1
                        S1 = SECOND( )
   50                   CONTINUE
                        S2 = SECOND( )
                        UNTIME = S2 - S1
                        ICL = ICL + 1
                        IF( ICL.LE.IC ) THEN
                           CALL CTIMMG( 0, N, NRHS, B, LDB, 0, 0 )
                           GO TO 50
                        END IF
*
                        TIME = ( TIME-UNTIME ) / REAL( IC )
                        OPS = SOPLA( 'CPBTRS', N, NRHS, K, K, 0 )
                        RESLTS( I, IK, I3, 2 ) = SMFLOP( OPS, TIME,
     $                     INFO )
   60                CONTINUE
                  END IF
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
*
*        Print tables of results for each timed routine.
*
         DO 120 ISUB = 1, NSUBS
            IF( .NOT.TIMSUB( ISUB ) )
     $         GO TO 120
*
*           Print header for routine names.
*
            IF( IN.EQ.1 .OR. CNAME.EQ.'CPB   ' ) THEN
               WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
               IF( NLDA.GT.1 ) THEN
                  DO 100 I = 1, NLDA
                     WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
  100             CONTINUE
               END IF
            END IF
            WRITE( NOUT, FMT = * )
            DO 110 IUPLO = 1, 2
               WRITE( NOUT, FMT = 9996 )SUBNAM( ISUB ), N,
     $            UPLOS( IUPLO )
               I3 = ( IUPLO-1 )*NLDA + 1
               IF( ISUB.EQ.1 ) THEN
                  CALL SPRTBL( 'NB', 'K', NNB, NBVAL, NK, KVAL, NLDA,
     $                         RESLTS( 1, 1, I3, 1 ), LDR1, LDR2, NOUT )
               ELSE IF( ISUB.EQ.2 ) THEN
                  CALL SPRTBL( 'NRHS', 'K', NNS, NSVAL, NK, KVAL, NLDA,
     $                         RESLTS( 1, 1, I3, 2 ), LDR1, LDR2, NOUT )
               END IF
  110       CONTINUE
  120    CONTINUE
  130 CONTINUE
*
  140 CONTINUE
 9999 FORMAT( 1X, A6, ' timing run not attempted', / )
 9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
 9997 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
 9996 FORMAT( 5X, A6, ' with M =', I6, ', UPLO = ''', A1, '''', / )
      RETURN
*
*     End of CTIMPB
*
      END