1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
SUBROUTINE ORTHES(NM,N,LOW,IGH,A,ORT)
C
INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
DOUBLE PRECISION A(NM,N),ORT(IGH)
DOUBLE PRECISION F,G,H,SCALE
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ORTHES,
C NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
C
C GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE
C REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS
C LOW THROUGH IGH TO UPPER HESSENBERG FORM BY
C ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C ON INPUT
C
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT.
C
C N IS THE ORDER OF THE MATRIX.
C
C LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
C SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USED,
C SET LOW=1, IGH=N.
C
C A CONTAINS THE INPUT MATRIX.
C
C ON OUTPUT
C
C A CONTAINS THE HESSENBERG MATRIX. INFORMATION ABOUT
C THE ORTHOGONAL TRANSFORMATIONS USED IN THE REDUCTION
C IS STORED IN THE REMAINING TRIANGLE UNDER THE
C HESSENBERG MATRIX.
C
C ORT CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS.
C ONLY ELEMENTS LOW THROUGH IGH ARE USED.
C
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C THIS VERSION DATED AUGUST 1983.
C
C ------------------------------------------------------------------
C
LA = IGH - 1
KP1 = LOW + 1
IF (LA .LT. KP1) GO TO 200
C
DO 180 M = KP1, LA
H = 0.0D0
ORT(M) = 0.0D0
SCALE = 0.0D0
C .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
DO 90 I = M, IGH
90 SCALE = SCALE + DABS(A(I,M-1))
C
IF (SCALE .EQ. 0.0D0) GO TO 180
MP = M + IGH
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
DO 100 II = M, IGH
I = MP - II
ORT(I) = A(I,M-1) / SCALE
H = H + ORT(I) * ORT(I)
100 CONTINUE
C
G = -DSIGN(DSQRT(H),ORT(M))
H = H - ORT(M) * G
ORT(M) = ORT(M) - G
C .......... FORM (I-(U*UT)/H) * A ..........
DO 130 J = M, N
F = 0.0D0
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
DO 110 II = M, IGH
I = MP - II
F = F + ORT(I) * A(I,J)
110 CONTINUE
C
F = F / H
C
DO 120 I = M, IGH
120 A(I,J) = A(I,J) - F * ORT(I)
C
130 CONTINUE
C .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
DO 160 I = 1, IGH
F = 0.0D0
C .......... FOR J=IGH STEP -1 UNTIL M DO -- ..........
DO 140 JJ = M, IGH
J = MP - JJ
F = F + ORT(J) * A(I,J)
140 CONTINUE
C
F = F / H
C
DO 150 J = M, IGH
150 A(I,J) = A(I,J) - F * ORT(J)
C
160 CONTINUE
C
ORT(M) = SCALE * ORT(M)
A(M,M-1) = SCALE * G
180 CONTINUE
C
200 RETURN
END
SUBROUTINE TRED1(NM,N,A,D,E,E2)
C
INTEGER I,J,K,L,N,II,NM,JP1
DOUBLE PRECISION A(NM,N),D(N),E(N),E2(N)
DOUBLE PRECISION F,G,H,SCALE
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED1,
C NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX
C TO A SYMMETRIC TRIDIAGONAL MATRIX USING
C ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C ON INPUT
C
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT.
C
C N IS THE ORDER OF THE MATRIX.
C
C A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE
C LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.
C
C ON OUTPUT
C
C A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANS-
C FORMATIONS USED IN THE REDUCTION IN ITS STRICT LOWER
C TRIANGLE. THE FULL UPPER TRIANGLE OF A IS UNALTERED.
C
C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX.
C
C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO.
C
C E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
C
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C THIS VERSION DATED AUGUST 1983.
C
C ------------------------------------------------------------------
C
DO 100 I = 1, N
D(I) = A(N,I)
A(N,I) = A(I,I)
100 CONTINUE
C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
DO 300 II = 1, N
I = N + 1 - II
L = I - 1
H = 0.0D0
SCALE = 0.0D0
IF (L .LT. 1) GO TO 130
C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
DO 120 K = 1, L
120 SCALE = SCALE + DABS(D(K))
C
IF (SCALE .NE. 0.0D0) GO TO 140
C
DO 125 J = 1, L
D(J) = A(L,J)
A(L,J) = A(I,J)
A(I,J) = 0.0D0
125 CONTINUE
C
130 E(I) = 0.0D0
E2(I) = 0.0D0
GO TO 300
C
140 DO 150 K = 1, L
D(K) = D(K) / SCALE
H = H + D(K) * D(K)
150 CONTINUE
C
E2(I) = SCALE * SCALE * H
F = D(L)
G = -DSIGN(DSQRT(H),F)
E(I) = SCALE * G
H = H - F * G
D(L) = F - G
IF (L .EQ. 1) GO TO 285
C .......... FORM A*U ..........
DO 170 J = 1, L
170 E(J) = 0.0D0
C
DO 240 J = 1, L
F = D(J)
G = E(J) + A(J,J) * F
JP1 = J + 1
IF (L .LT. JP1) GO TO 220
C
DO 200 K = JP1, L
G = G + A(K,J) * D(K)
E(K) = E(K) + A(K,J) * F
200 CONTINUE
C
220 E(J) = G
240 CONTINUE
C .......... FORM P ..........
F = 0.0D0
C
DO 245 J = 1, L
E(J) = E(J) / H
F = F + E(J) * D(J)
245 CONTINUE
C
H = F / (H + H)
C .......... FORM Q ..........
DO 250 J = 1, L
250 E(J) = E(J) - H * D(J)
C .......... FORM REDUCED A ..........
DO 280 J = 1, L
F = D(J)
G = E(J)
C
DO 260 K = J, L
260 A(K,J) = A(K,J) - F * E(K) - G * D(K)
C
280 CONTINUE
C
285 DO 290 J = 1, L
F = D(J)
D(J) = A(L,J)
A(L,J) = A(I,J)
A(I,J) = F * SCALE
290 CONTINUE
C
300 CONTINUE
C
RETURN
END
|