File: deispk.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (242 lines) | stat: -rw-r--r-- 6,863 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
      SUBROUTINE ORTHES(NM,N,LOW,IGH,A,ORT)
C
      INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
      DOUBLE PRECISION A(NM,N),ORT(IGH)
      DOUBLE PRECISION F,G,H,SCALE
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ORTHES,
C     NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
C
C     GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE
C     REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS
C     LOW THROUGH IGH TO UPPER HESSENBERG FORM BY
C     ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
C          SUBROUTINE  BALANC.  IF  BALANC  HAS NOT BEEN USED,
C          SET LOW=1, IGH=N.
C
C        A CONTAINS THE INPUT MATRIX.
C
C     ON OUTPUT
C
C        A CONTAINS THE HESSENBERG MATRIX.  INFORMATION ABOUT
C          THE ORTHOGONAL TRANSFORMATIONS USED IN THE REDUCTION
C          IS STORED IN THE REMAINING TRIANGLE UNDER THE
C          HESSENBERG MATRIX.
C
C        ORT CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS.
C          ONLY ELEMENTS LOW THROUGH IGH ARE USED.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      LA = IGH - 1
      KP1 = LOW + 1
      IF (LA .LT. KP1) GO TO 200
C
      DO 180 M = KP1, LA
         H = 0.0D0
         ORT(M) = 0.0D0
         SCALE = 0.0D0
C     .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
         DO 90 I = M, IGH
   90    SCALE = SCALE + DABS(A(I,M-1))
C
         IF (SCALE .EQ. 0.0D0) GO TO 180
         MP = M + IGH
C     .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
         DO 100 II = M, IGH
            I = MP - II
            ORT(I) = A(I,M-1) / SCALE
            H = H + ORT(I) * ORT(I)
  100    CONTINUE
C
         G = -DSIGN(DSQRT(H),ORT(M))
         H = H - ORT(M) * G
         ORT(M) = ORT(M) - G
C     .......... FORM (I-(U*UT)/H) * A ..........
         DO 130 J = M, N
            F = 0.0D0
C     .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
            DO 110 II = M, IGH
               I = MP - II
               F = F + ORT(I) * A(I,J)
  110       CONTINUE
C
            F = F / H
C
            DO 120 I = M, IGH
  120       A(I,J) = A(I,J) - F * ORT(I)
C
  130    CONTINUE
C     .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
         DO 160 I = 1, IGH
            F = 0.0D0
C     .......... FOR J=IGH STEP -1 UNTIL M DO -- ..........
            DO 140 JJ = M, IGH
               J = MP - JJ
               F = F + ORT(J) * A(I,J)
  140       CONTINUE
C
            F = F / H
C
            DO 150 J = M, IGH
  150       A(I,J) = A(I,J) - F * ORT(J)
C
  160    CONTINUE
C
         ORT(M) = SCALE * ORT(M)
         A(M,M-1) = SCALE * G
  180 CONTINUE
C
  200 RETURN
      END
      SUBROUTINE TRED1(NM,N,A,D,E,E2)
C
      INTEGER I,J,K,L,N,II,NM,JP1
      DOUBLE PRECISION A(NM,N),D(N),E(N),E2(N)
      DOUBLE PRECISION F,G,H,SCALE
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED1,
C     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX
C     TO A SYMMETRIC TRIDIAGONAL MATRIX USING
C     ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        A CONTAINS THE REAL SYMMETRIC INPUT MATRIX.  ONLY THE
C          LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.
C
C     ON OUTPUT
C
C        A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANS-
C          FORMATIONS USED IN THE REDUCTION IN ITS STRICT LOWER
C          TRIANGLE.  THE FULL UPPER TRIANGLE OF A IS UNALTERED.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C          MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO.
C
C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C          E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      DO 100 I = 1, N
         D(I) = A(N,I)
         A(N,I) = A(I,I)
  100 CONTINUE
C     .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
      DO 300 II = 1, N
         I = N + 1 - II
         L = I - 1
         H = 0.0D0
         SCALE = 0.0D0
         IF (L .LT. 1) GO TO 130
C     .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
         DO 120 K = 1, L
  120    SCALE = SCALE + DABS(D(K))
C
         IF (SCALE .NE. 0.0D0) GO TO 140
C
         DO 125 J = 1, L
            D(J) = A(L,J)
            A(L,J) = A(I,J)
            A(I,J) = 0.0D0
  125    CONTINUE
C
  130    E(I) = 0.0D0
         E2(I) = 0.0D0
         GO TO 300
C
  140    DO 150 K = 1, L
            D(K) = D(K) / SCALE
            H = H + D(K) * D(K)
  150    CONTINUE
C
         E2(I) = SCALE * SCALE * H
         F = D(L)
         G = -DSIGN(DSQRT(H),F)
         E(I) = SCALE * G
         H = H - F * G
         D(L) = F - G
         IF (L .EQ. 1) GO TO 285
C     .......... FORM A*U ..........
         DO 170 J = 1, L
  170    E(J) = 0.0D0
C
         DO 240 J = 1, L
            F = D(J)
            G = E(J) + A(J,J) * F
            JP1 = J + 1
            IF (L .LT. JP1) GO TO 220
C
            DO 200 K = JP1, L
               G = G + A(K,J) * D(K)
               E(K) = E(K) + A(K,J) * F
  200       CONTINUE
C
  220       E(J) = G
  240    CONTINUE
C     .......... FORM P ..........
         F = 0.0D0
C
         DO 245 J = 1, L
            E(J) = E(J) / H
            F = F + E(J) * D(J)
  245    CONTINUE
C
         H = F / (H + H)
C     .......... FORM Q ..........
         DO 250 J = 1, L
  250    E(J) = E(J) - H * D(J)
C     .......... FORM REDUCED A ..........
         DO 280 J = 1, L
            F = D(J)
            G = E(J)
C
            DO 260 K = J, L
  260       A(K,J) = A(K,J) - F * E(K) - G * D(K)
C
  280    CONTINUE
C
  285    DO 290 J = 1, L
            F = D(J)
            D(J) = A(L,J)
            A(L,J) = A(I,J)
            A(I,J) = F * SCALE
  290    CONTINUE
C
  300 CONTINUE
C
      RETURN
      END