1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
INTEGER LDA,N,IPVT(*),INFO
DOUBLE PRECISION A(LDA,*)
C
C DGEFA FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION.
C
C DGEFA IS USUALLY CALLED BY DGECO, BUT IT CAN BE CALLED
C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
C (TIME FOR DGECO) = (1 + 9/N)*(TIME FOR DGEFA) .
C
C ON ENTRY
C
C A DOUBLE PRECISION(LDA, N)
C THE MATRIX TO BE FACTORED.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C ON RETURN
C
C A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
C WHICH WERE USED TO OBTAIN IT.
C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
C
C IPVT INTEGER(N)
C AN INTEGER VECTOR OF PIVOT INDICES.
C
C INFO INTEGER
C = 0 NORMAL VALUE.
C = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
C CONDITION FOR THIS SUBROUTINE, BUT IT DOES
C INDICATE THAT DGESL OR DGEDI WILL DIVIDE BY ZERO
C IF CALLED. USE RCOND IN DGECO FOR A RELIABLE
C INDICATION OF SINGULARITY.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS DAXPY,DSCAL,IDAMAX
C
C INTERNAL VARIABLES
C
DOUBLE PRECISION T
INTEGER IDAMAX,J,K,KP1,L,NM1
C
C
C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C
INFO = 0
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
C
C FIND L = PIVOT INDEX
C
L = IDAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L
C
C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
C
IF (A(L,K) .EQ. 0.0D0) GO TO 40
C
C INTERCHANGE IF NECESSARY
C
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
10 CONTINUE
C
C COMPUTE MULTIPLIERS
C
T = -1.0D0/A(K,K)
CALL DSCAL(N-K,T,A(K+1,K),1)
C
C ROW ELIMINATION WITH COLUMN INDEXING
C
DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20
A(L,J) = A(K,J)
A(K,J) = T
20 CONTINUE
CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (A(N,N) .EQ. 0.0D0) INFO = N
RETURN
END
SUBROUTINE DPOFA(A,LDA,N,INFO)
INTEGER LDA,N,INFO
DOUBLE PRECISION A(LDA,*)
C
C DPOFA FACTORS A DOUBLE PRECISION SYMMETRIC POSITIVE DEFINITE
C MATRIX.
C
C DPOFA IS USUALLY CALLED BY DPOCO, BUT IT CAN BE CALLED
C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
C (TIME FOR DPOCO) = (1 + 18/N)*(TIME FOR DPOFA) .
C
C ON ENTRY
C
C A DOUBLE PRECISION(LDA, N)
C THE SYMMETRIC MATRIX TO BE FACTORED. ONLY THE
C DIAGONAL AND UPPER TRIANGLE ARE USED.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C ON RETURN
C
C A AN UPPER TRIANGULAR MATRIX R SO THAT A = TRANS(R)*R
C WHERE TRANS(R) IS THE TRANSPOSE.
C THE STRICT LOWER TRIANGLE IS UNALTERED.
C IF INFO .NE. 0 , THE FACTORIZATION IS NOT COMPLETE.
C
C INFO INTEGER
C = 0 FOR NORMAL RETURN.
C = K SIGNALS AN ERROR CONDITION. THE LEADING MINOR
C OF ORDER K IS NOT POSITIVE DEFINITE.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS DDOT
C FORTRAN DSQRT
C
C INTERNAL VARIABLES
C
DOUBLE PRECISION DDOT,T
DOUBLE PRECISION S
INTEGER J,JM1,K
C BEGIN BLOCK WITH ...EXITS TO 40
C
C
DO 30 J = 1, N
INFO = J
S = 0.0D0
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 20
DO 10 K = 1, JM1
T = A(K,J) - DDOT(K-1,A(1,K),1,A(1,J),1)
T = T/A(K,K)
A(K,J) = T
S = S + T*T
10 CONTINUE
20 CONTINUE
S = A(J,J) - S
C ......EXIT
IF (S .LE. 0.0D0) GO TO 40
A(J,J) = DSQRT(S)
30 CONTINUE
INFO = 0
40 CONTINUE
RETURN
END
SUBROUTINE DQRDC(X,LDX,N,P,QRAUX,JPVT,WORK,JOB)
INTEGER LDX,N,P,JOB
INTEGER JPVT(*)
DOUBLE PRECISION X(LDX,*),QRAUX(*),WORK(*)
C
C DQRDC USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR
C FACTORIZATION OF AN N BY P MATRIX X. COLUMN PIVOTING
C BASED ON THE 2-NORMS OF THE REDUCED COLUMNS MAY BE
C PERFORMED AT THE USERS OPTION.
C
C ON ENTRY
C
C X DOUBLE PRECISION(LDX,P), WHERE LDX .GE. N.
C X CONTAINS THE MATRIX WHOSE DECOMPOSITION IS TO BE
C COMPUTED.
C
C LDX INTEGER.
C LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C
C N INTEGER.
C N IS THE NUMBER OF ROWS OF THE MATRIX X.
C
C P INTEGER.
C P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C
C JPVT INTEGER(P).
C JPVT CONTAINS INTEGERS THAT CONTROL THE SELECTION
C OF THE PIVOT COLUMNS. THE K-TH COLUMN X(K) OF X
C IS PLACED IN ONE OF THREE CLASSES ACCORDING TO THE
C VALUE OF JPVT(K).
C
C IF JPVT(K) .GT. 0, THEN X(K) IS AN INITIAL
C COLUMN.
C
C IF JPVT(K) .EQ. 0, THEN X(K) IS A FREE COLUMN.
C
C IF JPVT(K) .LT. 0, THEN X(K) IS A FINAL COLUMN.
C
C BEFORE THE DECOMPOSITION IS COMPUTED, INITIAL COLUMNS
C ARE MOVED TO THE BEGINNING OF THE ARRAY X AND FINAL
C COLUMNS TO THE END. BOTH INITIAL AND FINAL COLUMNS
C ARE FROZEN IN PLACE DURING THE COMPUTATION AND ONLY
C FREE COLUMNS ARE MOVED. AT THE K-TH STAGE OF THE
C REDUCTION, IF X(K) IS OCCUPIED BY A FREE COLUMN
C IT IS INTERCHANGED WITH THE FREE COLUMN OF LARGEST
C REDUCED NORM. JPVT IS NOT REFERENCED IF
C JOB .EQ. 0.
C
C WORK DOUBLE PRECISION(P).
C WORK IS A WORK ARRAY. WORK IS NOT REFERENCED IF
C JOB .EQ. 0.
C
C JOB INTEGER.
C JOB IS AN INTEGER THAT INITIATES COLUMN PIVOTING.
C IF JOB .EQ. 0, NO PIVOTING IS DONE.
C IF JOB .NE. 0, PIVOTING IS DONE.
C
C ON RETURN
C
C X X CONTAINS IN ITS UPPER TRIANGLE THE UPPER
C TRIANGULAR MATRIX R OF THE QR FACTORIZATION.
C BELOW ITS DIAGONAL X CONTAINS INFORMATION FROM
C WHICH THE ORTHOGONAL PART OF THE DECOMPOSITION
C CAN BE RECOVERED. NOTE THAT IF PIVOTING HAS
C BEEN REQUESTED, THE DECOMPOSITION IS NOT THAT
C OF THE ORIGINAL MATRIX X BUT THAT OF X
C WITH ITS COLUMNS PERMUTED AS DESCRIBED BY JPVT.
C
C QRAUX DOUBLE PRECISION(P).
C QRAUX CONTAINS FURTHER INFORMATION REQUIRED TO RECOVER
C THE ORTHOGONAL PART OF THE DECOMPOSITION.
C
C JPVT JPVT(K) CONTAINS THE INDEX OF THE COLUMN OF THE
C ORIGINAL MATRIX THAT HAS BEEN INTERCHANGED INTO
C THE K-TH COLUMN, IF PIVOTING WAS REQUESTED.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C
C DQRDC USES THE FOLLOWING FUNCTIONS AND SUBPROGRAMS.
C
C BLAS DAXPY,DDOT,DSCAL,DSWAP,DNRM2
C FORTRAN DABS,DMAX1,MIN0,DSQRT
C
C INTERNAL VARIABLES
C
INTEGER J,JJ,JP,L,LP1,LUP,MAXJ,PL,PU
DOUBLE PRECISION MAXNRM,DNRM2,TT
DOUBLE PRECISION DDOT,NRMXL,T
LOGICAL NEGJ,SWAPJ
C
C
PL = 1
PU = 0
IF (JOB .EQ. 0) GO TO 60
C
C PIVOTING HAS BEEN REQUESTED. REARRANGE THE COLUMNS
C ACCORDING TO JPVT.
C
DO 20 J = 1, P
SWAPJ = JPVT(J) .GT. 0
NEGJ = JPVT(J) .LT. 0
JPVT(J) = J
IF (NEGJ) JPVT(J) = -J
IF (.NOT.SWAPJ) GO TO 10
IF (J .NE. PL) CALL DSWAP(N,X(1,PL),1,X(1,J),1)
JPVT(J) = JPVT(PL)
JPVT(PL) = J
PL = PL + 1
10 CONTINUE
20 CONTINUE
PU = P
DO 50 JJ = 1, P
J = P - JJ + 1
IF (JPVT(J) .GE. 0) GO TO 40
JPVT(J) = -JPVT(J)
IF (J .EQ. PU) GO TO 30
CALL DSWAP(N,X(1,PU),1,X(1,J),1)
JP = JPVT(PU)
JPVT(PU) = JPVT(J)
JPVT(J) = JP
30 CONTINUE
PU = PU - 1
40 CONTINUE
50 CONTINUE
60 CONTINUE
C
C COMPUTE THE NORMS OF THE FREE COLUMNS.
C
IF (PU .LT. PL) GO TO 80
DO 70 J = PL, PU
QRAUX(J) = DNRM2(N,X(1,J),1)
WORK(J) = QRAUX(J)
70 CONTINUE
80 CONTINUE
C
C PERFORM THE HOUSEHOLDER REDUCTION OF X.
C
LUP = MIN0(N,P)
DO 200 L = 1, LUP
IF (L .LT. PL .OR. L .GE. PU) GO TO 120
C
C LOCATE THE COLUMN OF LARGEST NORM AND BRING IT
C INTO THE PIVOT POSITION.
C
MAXNRM = 0.0D0
MAXJ = L
DO 100 J = L, PU
IF (QRAUX(J) .LE. MAXNRM) GO TO 90
MAXNRM = QRAUX(J)
MAXJ = J
90 CONTINUE
100 CONTINUE
IF (MAXJ .EQ. L) GO TO 110
CALL DSWAP(N,X(1,L),1,X(1,MAXJ),1)
QRAUX(MAXJ) = QRAUX(L)
WORK(MAXJ) = WORK(L)
JP = JPVT(MAXJ)
JPVT(MAXJ) = JPVT(L)
JPVT(L) = JP
110 CONTINUE
120 CONTINUE
QRAUX(L) = 0.0D0
IF (L .EQ. N) GO TO 190
C
C COMPUTE THE HOUSEHOLDER TRANSFORMATION FOR COLUMN L.
C
NRMXL = DNRM2(N-L+1,X(L,L),1)
IF (NRMXL .EQ. 0.0D0) GO TO 180
IF (X(L,L) .NE. 0.0D0) NRMXL = DSIGN(NRMXL,X(L,L))
CALL DSCAL(N-L+1,1.0D0/NRMXL,X(L,L),1)
X(L,L) = 1.0D0 + X(L,L)
C
C APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS,
C UPDATING THE NORMS.
C
LP1 = L + 1
IF (P .LT. LP1) GO TO 170
DO 160 J = LP1, P
T = -DDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
CALL DAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
IF (J .LT. PL .OR. J .GT. PU) GO TO 150
IF (QRAUX(J) .EQ. 0.0D0) GO TO 150
TT = 1.0D0 - (DABS(X(L,J))/QRAUX(J))**2
TT = DMAX1(TT,0.0D0)
T = TT
TT = 1.0D0 + 0.05D0*TT*(QRAUX(J)/WORK(J))**2
IF (TT .EQ. 1.0D0) GO TO 130
QRAUX(J) = QRAUX(J)*DSQRT(T)
GO TO 140
130 CONTINUE
QRAUX(J) = DNRM2(N-L,X(L+1,J),1)
WORK(J) = QRAUX(J)
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
C
C SAVE THE TRANSFORMATION.
C
QRAUX(L) = X(L,L)
X(L,L) = -NRMXL
180 CONTINUE
190 CONTINUE
200 CONTINUE
RETURN
END
SUBROUTINE DGTSL(N,C,D,E,B,INFO)
INTEGER N,INFO
DOUBLE PRECISION C(*),D(*),E(*),B(*)
C
C DGTSL GIVEN A GENERAL TRIDIAGONAL MATRIX AND A RIGHT HAND
C SIDE WILL FIND THE SOLUTION.
C
C ON ENTRY
C
C N INTEGER
C IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C C DOUBLE PRECISION(N)
C IS THE SUBDIAGONAL OF THE TRIDIAGONAL MATRIX.
C C(2) THROUGH C(N) SHOULD CONTAIN THE SUBDIAGONAL.
C ON OUTPUT C IS DESTROYED.
C
C D DOUBLE PRECISION(N)
C IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C ON OUTPUT D IS DESTROYED.
C
C E DOUBLE PRECISION(N)
C IS THE SUPERDIAGONAL OF THE TRIDIAGONAL MATRIX.
C E(1) THROUGH E(N-1) SHOULD CONTAIN THE SUPERDIAGONAL.
C ON OUTPUT E IS DESTROYED.
C
C B DOUBLE PRECISION(N)
C IS THE RIGHT HAND SIDE VECTOR.
C
C ON RETURN
C
C B IS THE SOLUTION VECTOR.
C
C INFO INTEGER
C = 0 NORMAL VALUE.
C = K IF THE K-TH ELEMENT OF THE DIAGONAL BECOMES
C EXACTLY ZERO. THE SUBROUTINE RETURNS WHEN
C THIS IS DETECTED.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C NO EXTERNALS
C FORTRAN DABS
C
C INTERNAL VARIABLES
C
INTEGER K,KB,KP1,NM1,NM2
DOUBLE PRECISION T
C BEGIN BLOCK PERMITTING ...EXITS TO 100
C
INFO = 0
C(1) = D(1)
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 40
D(1) = E(1)
E(1) = 0.0D0
E(N) = 0.0D0
C
DO 30 K = 1, NM1
KP1 = K + 1
C
C FIND THE LARGEST OF THE TWO ROWS
C
IF (DABS(C(KP1)) .LT. DABS(C(K))) GO TO 10
C
C INTERCHANGE ROW
C
T = C(KP1)
C(KP1) = C(K)
C(K) = T
T = D(KP1)
D(KP1) = D(K)
D(K) = T
T = E(KP1)
E(KP1) = E(K)
E(K) = T
T = B(KP1)
B(KP1) = B(K)
B(K) = T
10 CONTINUE
C
C ZERO ELEMENTS
C
IF (C(K) .NE. 0.0D0) GO TO 20
INFO = K
C ............EXIT
GO TO 100
20 CONTINUE
T = -C(KP1)/C(K)
C(KP1) = D(KP1) + T*D(K)
D(KP1) = E(KP1) + T*E(K)
E(KP1) = 0.0D0
B(KP1) = B(KP1) + T*B(K)
30 CONTINUE
40 CONTINUE
IF (C(N) .NE. 0.0D0) GO TO 50
INFO = N
GO TO 90
50 CONTINUE
C
C BACK SOLVE
C
NM2 = N - 2
B(N) = B(N)/C(N)
IF (N .EQ. 1) GO TO 80
B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
IF (NM2 .LT. 1) GO TO 70
DO 60 KB = 1, NM2
K = NM2 - KB + 1
B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)
60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
RETURN
END
SUBROUTINE DPTSL(N,D,E,B)
INTEGER N
DOUBLE PRECISION D(*),E(*),B(*)
C
C DPTSL GIVEN A POSITIVE DEFINITE TRIDIAGONAL MATRIX AND A RIGHT
C HAND SIDE WILL FIND THE SOLUTION.
C
C ON ENTRY
C
C N INTEGER
C IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C D DOUBLE PRECISION(N)
C IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C ON OUTPUT D IS DESTROYED.
C
C E DOUBLE PRECISION(N)
C IS THE OFFDIAGONAL OF THE TRIDIAGONAL MATRIX.
C E(1) THROUGH E(N-1) SHOULD CONTAIN THE
C OFFDIAGONAL.
C
C B DOUBLE PRECISION(N)
C IS THE RIGHT HAND SIDE VECTOR.
C
C ON RETURN
C
C B CONTAINS THE SOULTION.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C NO EXTERNALS
C FORTRAN MOD
C
C INTERNAL VARIABLES
C
INTEGER K,KBM1,KE,KF,KP1,NM1,NM1D2
DOUBLE PRECISION T1,T2
C
C CHECK FOR 1 X 1 CASE
C
IF (N .NE. 1) GO TO 10
B(1) = B(1)/D(1)
GO TO 70
10 CONTINUE
NM1 = N - 1
NM1D2 = NM1/2
IF (N .EQ. 2) GO TO 30
KBM1 = N - 1
C
C ZERO TOP HALF OF SUBDIAGONAL AND BOTTOM HALF OF
C SUPERDIAGONAL
C
DO 20 K = 1, NM1D2
T1 = E(K)/D(K)
D(K+1) = D(K+1) - T1*E(K)
B(K+1) = B(K+1) - T1*B(K)
T2 = E(KBM1)/D(KBM1+1)
D(KBM1) = D(KBM1) - T2*E(KBM1)
B(KBM1) = B(KBM1) - T2*B(KBM1+1)
KBM1 = KBM1 - 1
20 CONTINUE
30 CONTINUE
KP1 = NM1D2 + 1
C
C CLEAN UP FOR POSSIBLE 2 X 2 BLOCK AT CENTER
C
IF (MOD(N,2) .NE. 0) GO TO 40
T1 = E(KP1)/D(KP1)
D(KP1+1) = D(KP1+1) - T1*E(KP1)
B(KP1+1) = B(KP1+1) - T1*B(KP1)
KP1 = KP1 + 1
40 CONTINUE
C
C BACK SOLVE STARTING AT THE CENTER, GOING TOWARDS THE TOP
C AND BOTTOM
C
B(KP1) = B(KP1)/D(KP1)
IF (N .EQ. 2) GO TO 60
K = KP1 - 1
KE = KP1 + NM1D2 - 1
DO 50 KF = KP1, KE
B(K) = (B(K) - E(K)*B(K+1))/D(K)
B(KF+1) = (B(KF+1) - E(KF)*B(KF))/D(KF+1)
K = K - 1
50 CONTINUE
60 CONTINUE
IF (MOD(N,2) .EQ. 0) B(1) = (B(1) - E(1)*B(2))/D(1)
70 CONTINUE
RETURN
END
|