1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
DOUBLE PRECISION FUNCTION DOPBL2( SUBNAM, M, N, KKL, KKU )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER*6 SUBNAM
INTEGER KKL, KKU, M, N
* ..
*
* Purpose
* =======
*
* DOPBL2 computes an approximation of the number of floating point
* operations used by a subroutine SUBNAM with the given values
* of the parameters M, N, KL, and KU.
*
* This version counts operations for the Level 2 BLAS.
*
* Arguments
* =========
*
* SUBNAM (input) CHARACTER*6
* The name of the subroutine.
*
* M (input) INTEGER
* The number of rows of the coefficient matrix. M >= 0.
*
* N (input) INTEGER
* The number of columns of the coefficient matrix.
* If the matrix is square (such as in a solve routine) then
* N is the number of right hand sides. N >= 0.
*
* KKL (input) INTEGER
* The lower band width of the coefficient matrix.
* KL is set to max( 0, min( M-1, KKL ) ).
*
* KKU (input) INTEGER
* The upper band width of the coefficient matrix.
* KU is set to max( 0, min( N-1, KKU ) ).
*
* =====================================================================
*
* .. Local Scalars ..
CHARACTER C1
CHARACTER*2 C2
CHARACTER*3 C3
DOUBLE PRECISION ADDS, EK, EM, EN, KL, KU, MULTS
* ..
* .. External Functions ..
LOGICAL LSAME, LSAMEN
EXTERNAL LSAME, LSAMEN
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. .NOT.( LSAME( SUBNAM, 'S' ) .OR. LSAME( SUBNAM,
$ 'D' ) .OR. LSAME( SUBNAM, 'C' ) .OR. LSAME( SUBNAM, 'Z' ) ) )
$ THEN
DOPBL2 = 0
RETURN
END IF
*
C1 = SUBNAM( 1: 1 )
C2 = SUBNAM( 2: 3 )
C3 = SUBNAM( 4: 6 )
MULTS = 0
ADDS = 0
KL = MAX( 0, MIN( M-1, KKL ) )
KU = MAX( 0, MIN( N-1, KKU ) )
EM = M
EN = N
EK = KL
*
* -------------------------------
* Matrix-vector multiply routines
* -------------------------------
*
IF( LSAMEN( 3, C3, 'MV ' ) ) THEN
*
IF( LSAMEN( 2, C2, 'GE' ) ) THEN
*
MULTS = EM*( EN+1.D0 )
ADDS = EM*EN
*
* Assume M <= N + KL and KL < M
* N <= M + KU and KU < N
* so that the zero sections are triangles.
*
ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
*
MULTS = EM*( EN+1.D0 ) - ( EM-1.D0-KL )*( EM-KL ) / 2.D0 -
$ ( EN-1.D0-KU )*( EN-KU ) / 2.D0
ADDS = EM*( EN+1.D0 ) - ( EM-1.D0-KL )*( EM-KL ) / 2.D0 -
$ ( EN-1.D0-KU )*( EN-KU ) / 2.D0
*
ELSE IF( LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 2, C2, 'SP' ) .OR.
$ LSAMEN( 3, SUBNAM, 'CHE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZHE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'CHP' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZHP' ) ) THEN
*
MULTS = EM*( EM+1.D0 )
ADDS = EM*EM
*
ELSE IF( LSAMEN( 2, C2, 'SB' ) .OR.
$ LSAMEN( 3, SUBNAM, 'CHB' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZHB' ) ) THEN
*
MULTS = EM*( EM+1.D0 ) - ( EM-1.D0-EK )*( EM-EK )
ADDS = EM*EM - ( EM-1.D0-EK )*( EM-EK )
*
ELSE IF( LSAMEN( 2, C2, 'TR' ) .OR. LSAMEN( 2, C2, 'TP' ) )
$ THEN
*
MULTS = EM*( EM+1.D0 ) / 2.D0
ADDS = ( EM-1.D0 )*EM / 2.D0
*
ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
*
MULTS = EM*( EM+1.D0 ) / 2.D0 -
$ ( EM-EK-1.D0 )*( EM-EK ) / 2.D0
ADDS = ( EM-1.D0 )*EM / 2.D0 -
$ ( EM-EK-1.D0 )*( EM-EK ) / 2.D0
*
END IF
*
* ---------------------
* Matrix solve routines
* ---------------------
*
ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
*
IF( LSAMEN( 2, C2, 'TR' ) .OR. LSAMEN( 2, C2, 'TP' ) ) THEN
*
MULTS = EM*( EM+1.D0 ) / 2.D0
ADDS = ( EM-1.D0 )*EM / 2.D0
*
ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
*
MULTS = EM*( EM+1.D0 ) / 2.D0 -
$ ( EM-EK-1.D0 )*( EM-EK ) / 2.D0
ADDS = ( EM-1.D0 )*EM / 2.D0 -
$ ( EM-EK-1.D0 )*( EM-EK ) / 2.D0
*
END IF
*
* ----------------
* Rank-one updates
* ----------------
*
ELSE IF( LSAMEN( 3, C3, 'R ' ) ) THEN
*
IF( LSAMEN( 3, SUBNAM, 'SGE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'DGE' ) ) THEN
*
MULTS = EM*EN + MIN( EM, EN )
ADDS = EM*EN
*
ELSE IF( LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 2, C2, 'SP' ) .OR.
$ LSAMEN( 3, SUBNAM, 'CHE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'CHP' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZHE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZHP' ) ) THEN
*
MULTS = EM*( EM+1.D0 ) / 2.D0 + EM
ADDS = EM*( EM+1.D0 ) / 2.D0
*
END IF
*
ELSE IF( LSAMEN( 3, C3, 'RC ' ) .OR. LSAMEN( 3, C3, 'RU ' ) ) THEN
*
IF( LSAMEN( 3, SUBNAM, 'CGE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZGE' ) ) THEN
*
MULTS = EM*EN + MIN( EM, EN )
ADDS = EM*EN
*
END IF
*
* ----------------
* Rank-two updates
* ----------------
*
ELSE IF( LSAMEN( 3, C3, 'R2 ' ) ) THEN
IF( LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 2, C2, 'SP' ) .OR.
$ LSAMEN( 3, SUBNAM, 'CHE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'CHP' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZHE' ) .OR.
$ LSAMEN( 3, SUBNAM, 'ZHP' ) ) THEN
*
MULTS = EM*( EM+1.D0 ) + 2.D0*EM
ADDS = EM*( EM+1.D0 )
*
END IF
END IF
*
* ------------------------------------------------
* Compute the total number of operations.
* For real and double precision routines, count
* 1 for each multiply and 1 for each add.
* For complex and complex*16 routines, count
* 6 for each multiply and 2 for each add.
* ------------------------------------------------
*
IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) ) THEN
*
DOPBL2 = MULTS + ADDS
*
ELSE
*
DOPBL2 = 6*MULTS + 2*ADDS
*
END IF
*
RETURN
*
* End of DOPBL2
*
END
|