1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
PROGRAM DTIMAA
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* Purpose
* =======
*
* DTIMAA is the timing program for the DOUBLE PRECISION LAPACK
* routines. This program collects performance data for the factor,
* solve, and inverse routines used in solving systems of linear
* equations, and also for the orthogonal factorization and reduction
* routines used in solving least squares problems and matrix eigenvalue
* problems.
*
* The subprograms call a DOUBLE PRECISION function DSECND with no
* arguments which is assumed to return the central-processor time in
* seconds from some fixed starting time.
*
* The program is driven by a short data file, which specifies values
* for the matrix dimensions M, N and K, for the blocking parameters
* NB and NX, and for the leading array dimension LDA. A minimum time
* for each subroutine is included for timing small problems or for
* obtaining results on a machine with an inaccurate DSECND function.
*
* The matrix dimensions M, N, and K correspond to the three dimensions
* m, n, and k in the Level 3 BLAS. When timing the LAPACK routines for
* square matrices, M and N correspond to the matrix dimensions m and n,
* and K is the number of right-hand sides (nrhs) for the solves. When
* timing the LAPACK routines for band matrices, M is the matrix order
* m, N is the half-bandwidth (kl, ku, or kd in the LAPACK notation),
* and K is again the number of right-hand sides.
*
* The first 13 records of the data file are read using list-directed
* input. The first line of input is printed as the first line of
* output and can be used to identify different sets of results. To
* assist with debugging an input file, the values are printed out as
* they are read in.
*
* The following records are read using the format (A). For these
* records, the first 6 characters are reserved for the path or
* subroutine name. If a path name is used, the characters after the
* path name indicate the routines in the path to be timed, where
* 'T' or 't' means 'Time this routine'. If the line is blank after the
* path name, all routines in the path are timed. If fewer characters
* appear than routines in a path, the remaining characters are assumed
* to be 'F'. For example, the following 3 lines are equivalent ways of
* requesting timing of DGETRF:
* DGE T F F
* DGE T
* DGETRF
*
* An annotated example of a data file can be obtained by deleting the
* first 3 characters from the following 30 lines:
* LAPACK timing, DOUBLE PRECISION square matrices
* 5 Number of values of M
* 100 200 300 400 500 Values of M (row dimension)
* 5 Number of values of N
* 100 200 300 400 500 Values of N (column dimension)
* 2 Number of values of K
* 100 400 Values of K
* 5 Number of values of NB
* 1 16 32 48 64 Values of NB (blocksize)
* 0 48 128 128 128 Values of NX (crossover point)
* 2 Number of values of LDA
* 512 513 Values of LDA (leading dimension)
* 0.0 Minimum time in seconds
* DGE T T T
* DPO T T T
* DPP T T T
* DSY T T T
* DSP T T T
* DTR T T
* DTP T T
* DQR T T F
* DLQ T T F
* DQL T T F
* DRQ T T F
* DQP T
* DHR T T F F
* DTD T T F F
* DBR T F F
* DLS T T T T T T
*
* The routines are timed for all combinations of applicable values of
* M, N, K, NB, NX, and LDA, and for all combinations of options such as
* UPLO and TRANS. For Level 2 BLAS timings, values of NB are used for
* INCX. Certain subroutines, such as the QR factorization, treat the
* values of M and N as ordered pairs and operate on M x N matrices.
*
* Internal Parameters
* ===================
*
* NMAX INTEGER
* The maximum value of M or N for square matrices.
*
* LDAMAX INTEGER
* The maximum value of LDA.
*
* NMAXB INTEGER
* The maximum value of N for band matrices.
*
* MAXVAL INTEGER
* The maximum number of values that can be read in for M, N,
* K, NB, or NX.
*
* MXNLDA INTEGER
* The maximum number of values that can be read in for LDA.
*
* NIN INTEGER
* The unit number for input. Currently set to 5 (std input).
*
* NOUT INTEGER
* The unit number for output. Currently set to 6 (std output).
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX, LDAMAX, NMAXB
PARAMETER ( NMAX = 512, LDAMAX = NMAX+20, NMAXB = 5000 )
INTEGER LA
PARAMETER ( LA = NMAX*LDAMAX )
INTEGER MAXVAL, MXNLDA
PARAMETER ( MAXVAL = 12, MXNLDA = 4 )
INTEGER MAXPRM
PARAMETER ( MAXPRM = MXNLDA*(MAXVAL+1) )
INTEGER MAXSZS
PARAMETER ( MAXSZS = MAXVAL*MAXVAL*MAXVAL )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
* ..
* .. Local Scalars ..
LOGICAL BLAS, LDAMOK, LDANOK, LDAOK, MOK, NOK, NXNBOK
CHARACTER C1
CHARACTER*2 C2
CHARACTER*3 C3
CHARACTER*80 LINE
INTEGER I, I2, J2, L, LDR1, LDR2, LDR3, MAXK, MAXLDA,
$ MAXM, MAXN, MAXNB, MKMAX, NEED, NK, NLDA, NM,
$ NN, NNB
DOUBLE PRECISION S1, S2, TIMMIN
* ..
* .. Local Arrays ..
INTEGER IWORK( 2*NMAXB ), KVAL( MAXVAL ),
$ LDAVAL( MXNLDA ), MVAL( MAXVAL ),
$ NBVAL( MAXVAL ), NVAL( MAXVAL ),
$ NXVAL( MAXVAL )
DOUBLE PRECISION A( LA, 4 ), D( 2*NMAX, 2 ),
$ FLPTBL( 6*6*MAXSZS*MAXPRM*5 ),
$ OPCTBL( 6*6*MAXSZS*MAXPRM*5 ),
$ RESLTS( MAXVAL, MAXVAL, 2*MXNLDA, 4*MAXVAL ),
$ S( NMAX*2 ), TIMTBL( 6*6*MAXSZS*MAXPRM*5 ),
$ WORK( NMAX, NMAX+MAXVAL+30 )
* ..
* .. External Functions ..
LOGICAL LSAME, LSAMEN
DOUBLE PRECISION DSECND
EXTERNAL LSAME, LSAMEN, DSECND
* ..
* .. External Subroutines ..
EXTERNAL DTIMB2, DTIMB3, DTIMBR, DTIMGB, DTIMGE, DTIMGT,
$ DTIMHR, DTIMLQ, DTIMLS, DTIMMM, DTIMMV, DTIMPB,
$ DTIMPO, DTIMPP, DTIMPT, DTIMQ3, DTIMQL, DTIMQP,
$ DTIMQR, DTIMRQ, DTIMSP, DTIMSY, DTIMTB, DTIMTD,
$ DTIMTP, DTIMTR
* ..
* .. Scalars in Common ..
INTEGER NB, NEISPK, NPROC, NSHIFT
* ..
* .. Common blocks ..
COMMON / CENVIR / NB, NPROC, NSHIFT, NEISPK
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
S1 = DSECND( )
LDR1 = MAXVAL
LDR2 = MAXVAL
LDR3 = 2*MXNLDA
WRITE( NOUT, FMT = 9983 )
*
* Read the first line. The first four characters must be 'BLAS'
* for the BLAS data file format to be used. Otherwise, the LAPACK
* data file format is assumed.
*
READ( NIN, FMT = '( A80 )' )LINE
BLAS = LSAMEN( 4, LINE, 'BLAS' )
*
* Find the last non-blank and print the first line of input as the
* first line of output.
*
DO 10 L = 80, 1, -1
IF( LINE( L: L ).NE.' ' )
$ GO TO 20
10 CONTINUE
L = 1
20 CONTINUE
WRITE( NOUT, FMT = '( 1X, A, / )' )LINE( 1: L )
WRITE( NOUT, FMT = 9992 )
*
* Read in NM and the values for M.
*
READ( NIN, FMT = * )NM
IF( NM.GT.MAXVAL ) THEN
WRITE( NOUT, FMT = 9999 )'M', 'NM', MAXVAL
NM = MAXVAL
END IF
READ( NIN, FMT = * )( MVAL( I ), I = 1, NM )
WRITE( NOUT, FMT = 9991 )'M: ', ( MVAL( I ), I = 1, NM )
*
* Check that M <= NMAXB for all values of M.
*
MOK = .TRUE.
MAXM = 0
DO 30 I = 1, NM
MAXM = MAX( MVAL( I ), MAXM )
IF( MVAL( I ).GT.NMAXB ) THEN
WRITE( NOUT, FMT = 9997 )'M', MVAL( I ), NMAXB
MOK = .FALSE.
END IF
30 CONTINUE
IF( .NOT.MOK )
$ WRITE( NOUT, FMT = * )
*
* Read in NN and the values for N.
*
READ( NIN, FMT = * )NN
IF( NN.GT.MAXVAL ) THEN
WRITE( NOUT, FMT = 9999 )'N', 'NN', MAXVAL
NN = MAXVAL
END IF
READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
WRITE( NOUT, FMT = 9991 )'N: ', ( NVAL( I ), I = 1, NN )
*
* Check that N <= NMAXB for all values of N.
*
NOK = .TRUE.
MAXN = 0
DO 40 I = 1, NN
MAXN = MAX( NVAL( I ), MAXN )
IF( NVAL( I ).GT.NMAXB ) THEN
WRITE( NOUT, FMT = 9997 )'N', NVAL( I ), NMAXB
NOK = .FALSE.
END IF
40 CONTINUE
IF( .NOT.NOK )
$ WRITE( NOUT, FMT = * )
*
* Read in NK and the values for K.
*
READ( NIN, FMT = * )NK
IF( NK.GT.MAXVAL ) THEN
WRITE( NOUT, FMT = 9999 )'K', 'NK', MAXVAL
NK = MAXVAL
END IF
READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
WRITE( NOUT, FMT = 9991 )'K: ', ( KVAL( I ), I = 1, NK )
*
* Find the maximum value of K (= NRHS).
*
MAXK = 0
DO 50 I = 1, NK
MAXK = MAX( KVAL( I ), MAXK )
50 CONTINUE
MKMAX = MAXM*MAX( 2, MAXK )
*
* Read in NNB and the values for NB. For the BLAS input files,
* NBVAL is used to store values for INCX and INCY.
*
READ( NIN, FMT = * )NNB
IF( NNB.GT.MAXVAL ) THEN
WRITE( NOUT, FMT = 9999 )'NB', 'NNB', MAXVAL
NNB = MAXVAL
END IF
READ( NIN, FMT = * )( NBVAL( I ), I = 1, NNB )
*
* Find the maximum value of NB.
*
MAXNB = 0
DO 60 I = 1, NNB
MAXNB = MAX( NBVAL( I ), MAXNB )
60 CONTINUE
*
IF( BLAS ) THEN
WRITE( NOUT, FMT = 9991 )'INCX: ', ( NBVAL( I ), I = 1, NNB )
DO 70 I = 1, NNB
NXVAL( I ) = 0
70 CONTINUE
ELSE
*
* LAPACK data files: Read in the values for NX.
*
READ( NIN, FMT = * )( NXVAL( I ), I = 1, NNB )
*
WRITE( NOUT, FMT = 9991 )'NB: ', ( NBVAL( I ), I = 1, NNB )
WRITE( NOUT, FMT = 9991 )'NX: ', ( NXVAL( I ), I = 1, NNB )
END IF
*
* Read in NLDA and the values for LDA.
*
READ( NIN, FMT = * )NLDA
IF( NLDA.GT.MXNLDA ) THEN
WRITE( NOUT, FMT = 9999 )'LDA', 'NLDA', MXNLDA
NLDA = MXNLDA
END IF
READ( NIN, FMT = * )( LDAVAL( I ), I = 1, NLDA )
WRITE( NOUT, FMT = 9991 )'LDA: ', ( LDAVAL( I ), I = 1, NLDA )
*
* Check that LDA >= 1 for all values of LDA.
*
LDAOK = .TRUE.
MAXLDA = 0
DO 80 I = 1, NLDA
MAXLDA = MAX( LDAVAL( I ), MAXLDA )
IF( LDAVAL( I ).LE.0 ) THEN
WRITE( NOUT, FMT = 9998 )LDAVAL( I )
LDAOK = .FALSE.
END IF
80 CONTINUE
IF( .NOT.LDAOK )
$ WRITE( NOUT, FMT = * )
*
* Check that MAXLDA*MAXN <= LA (for the dense routines).
*
LDANOK = .TRUE.
NEED = MAXLDA*MAXN
IF( NEED.GT.LA ) THEN
WRITE( NOUT, FMT = 9995 )MAXLDA, MAXN, NEED
LDANOK = .FALSE.
END IF
*
* Check that MAXLDA*MAXM + MAXM*MAXK <= 3*LA (for band routines).
*
LDAMOK = .TRUE.
NEED = MAXLDA*MAXM + MAXM*MAXK
IF( NEED.GT.3*LA ) THEN
NEED = ( NEED+2 ) / 3
WRITE( NOUT, FMT = 9994 )MAXLDA, MAXM, MAXK, NEED
LDAMOK = .FALSE.
END IF
*
* Check that MAXN*MAXNB (or MAXN*INCX) <= LA.
*
NXNBOK = .TRUE.
NEED = MAXN*MAXNB
IF( NEED.GT.LA ) THEN
WRITE( NOUT, FMT = 9996 )MAXN, MAXNB, NEED
NXNBOK = .FALSE.
END IF
*
IF( .NOT.( MOK .AND. NOK .AND. LDAOK .AND. LDANOK .AND. NXNBOK ) )
$ THEN
WRITE( NOUT, FMT = 9984 )
GO TO 110
END IF
IF( .NOT.LDAMOK )
$ WRITE( NOUT, FMT = * )
*
* Read the minimum time to time a subroutine.
*
WRITE( NOUT, FMT = * )
READ( NIN, FMT = * )TIMMIN
WRITE( NOUT, FMT = 9993 )TIMMIN
WRITE( NOUT, FMT = * )
*
* Read the first input line.
*
READ( NIN, FMT = '(A)', END = 100 )LINE
*
* If the first record is the special signal 'NONE', then get the
* next line but don't time DGEMV and SGEMM.
*
IF( LSAMEN( 4, LINE, 'NONE' ) ) THEN
READ( NIN, FMT = '(A)', END = 100 )LINE
ELSE
WRITE( NOUT, FMT = 9990 )
*
* If the first record is the special signal 'BAND', then time
* the band routine DGBMV and DGEMM with N = K.
*
IF( LSAMEN( 4, LINE, 'BAND' ) ) THEN
IF( LDAMOK ) THEN
IF( MKMAX.GT.LA ) THEN
I2 = 2*LA - MKMAX + 1
J2 = 2
ELSE
I2 = LA - MKMAX + 1
J2 = 3
END IF
CALL DTIMMV( 'DGBMV ', NM, MVAL, NN, NVAL, NLDA, LDAVAL,
$ TIMMIN, A( 1, 1 ), MKMAX / 2, A( I2, J2 ),
$ A( LA-MKMAX / 2+1, 3 ), RESLTS, LDR1, LDR2,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )'DGBMV '
END IF
CALL DTIMMM( 'DGEMM ', 'K', NN, NVAL, NLDA, LDAVAL, TIMMIN,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), RESLTS, LDR1,
$ LDR2, NOUT )
READ( NIN, FMT = '(A)', END = 100 )LINE
*
ELSE
*
* Otherwise time DGEMV and SGEMM.
*
CALL DTIMMV( 'DGEMV ', NN, NVAL, NNB, NBVAL, NLDA, LDAVAL,
$ TIMMIN, A( 1, 1 ), LA, A( 1, 2 ), A( 1, 3 ),
$ RESLTS, LDR1, LDR2, NOUT )
CALL DTIMMM( 'DGEMM ', 'N', NN, NVAL, NLDA, LDAVAL, TIMMIN,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), RESLTS, LDR1,
$ LDR2, NOUT )
END IF
END IF
*
* Call the appropriate timing routine for each input line.
*
WRITE( NOUT, FMT = 9988 )
90 CONTINUE
C1 = LINE( 1: 1 )
C2 = LINE( 2: 3 )
C3 = LINE( 4: 6 )
*
* Check first character for correct precision.
*
IF( .NOT.LSAME( C1, 'Double precision' ) ) THEN
WRITE( NOUT, FMT = 9987 )LINE( 1: 6 )
*
ELSE IF( LSAMEN( 2, C2, 'B2' ) .OR. LSAMEN( 3, C3, 'MV ' ) .OR.
$ LSAMEN( 3, C3, 'SV ' ) .OR. LSAMEN( 3, C3, 'R ' ) .OR.
$ LSAMEN( 3, C3, 'RC ' ) .OR. LSAMEN( 3, C3, 'RU ' ) .OR.
$ LSAMEN( 3, C3, 'R2 ' ) ) THEN
*
* Level 2 BLAS
*
CALL DTIMB2( LINE, NM, MVAL, NN, NVAL, NK, KVAL, NNB, NBVAL,
$ NLDA, LDAVAL, LA, TIMMIN, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), RESLTS, LDR1, LDR2, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'B3' ) .OR. LSAMEN( 3, C3, 'MM ' ) .OR.
$ LSAMEN( 3, C3, 'SM ' ) .OR. LSAMEN( 3, C3, 'RK ' ) .OR.
$ LSAMEN( 3, C3, 'R2K' ) ) THEN
*
* Level 3 BLAS
*
CALL DTIMB3( LINE, NM, MVAL, NN, NVAL, NK, KVAL, NLDA, LDAVAL,
$ TIMMIN, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), RESLTS,
$ LDR1, LDR2, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'QR' ) .OR. LSAMEN( 2, C3, 'QR' ) .OR.
$ LSAMEN( 2, C3( 2: 3 ), 'QR' ) ) THEN
*
* QR routines
*
CALL DTIMQR( LINE, NN, MVAL, NVAL, NK, KVAL, NNB, NBVAL, NXVAL,
$ NLDA, LDAVAL, TIMMIN, A( 1, 1 ), D, A( 1, 2 ),
$ A( 1, 3 ), RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'LQ' ) .OR. LSAMEN( 2, C3, 'LQ' ) .OR.
$ LSAMEN( 2, C3( 2: 3 ), 'LQ' ) ) THEN
*
* LQ routines
*
CALL DTIMLQ( LINE, NN, MVAL, NVAL, NK, KVAL, NNB, NBVAL, NXVAL,
$ NLDA, LDAVAL, TIMMIN, A( 1, 1 ), D, A( 1, 2 ),
$ A( 1, 3 ), RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'QL' ) .OR. LSAMEN( 2, C3, 'QL' ) .OR.
$ LSAMEN( 2, C3( 2: 3 ), 'QL' ) ) THEN
*
* QL routines
*
CALL DTIMQL( LINE, NN, MVAL, NVAL, NK, KVAL, NNB, NBVAL, NXVAL,
$ NLDA, LDAVAL, TIMMIN, A( 1, 1 ), D, A( 1, 2 ),
$ A( 1, 3 ), RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'RQ' ) .OR. LSAMEN( 2, C3, 'RQ' ) .OR.
$ LSAMEN( 2, C3( 2: 3 ), 'RQ' ) ) THEN
*
* RQ routines
*
CALL DTIMRQ( LINE, NN, MVAL, NVAL, NK, KVAL, NNB, NBVAL, NXVAL,
$ NLDA, LDAVAL, TIMMIN, A( 1, 1 ), D, A( 1, 2 ),
$ A( 1, 3 ), RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'QP' ) .OR. LSAMEN( 3, C3, 'QPF' ) ) THEN
*
* QR with column pivoting
*
CALL DTIMQP( LINE, NM, MVAL, NVAL, NLDA, LDAVAL, TIMMIN,
$ A( 1, 1 ), A( 1, 2 ), D( 1, 1 ), A( 1, 3 ), IWORK,
$ RESLTS, LDR1, LDR2, NOUT )
*
* Blas-3 QR with column pivoting
*
CALL DTIMQ3( LINE, NM, MVAL, NVAL, NNB, NBVAL, NXVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ), D( 1, 1 ),
$ A( 1, 3 ), IWORK, RESLTS, LDR1, LDR2, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'HR' ) .OR. LSAMEN( 3, C3, 'HRD' ) .OR.
$ LSAMEN( 2, C3( 2: 3 ), 'HR' ) ) THEN
*
* Reduction to Hessenberg form
*
CALL DTIMHR( LINE, NN, NVAL, NK, KVAL, NNB, NBVAL, NXVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), D, A( 1, 2 ),
$ A( 1, 3 ), RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'TD' ) .OR. LSAMEN( 3, C3, 'TRD' ) .OR.
$ LSAMEN( 2, C3( 2: 3 ), 'TR' ) ) THEN
*
* Reduction to tridiagonal form
*
CALL DTIMTD( LINE, NN, NVAL, NK, KVAL, NNB, NBVAL, NXVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ), D( 1, 1 ),
$ D( 1, 2 ), A( 1, 3 ), RESLTS, LDR1, LDR2, LDR3,
$ NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'BR' ) .OR. LSAMEN( 3, C3, 'BRD' ) .OR.
$ LSAMEN( 2, C3( 2: 3 ), 'BR' ) ) THEN
*
* Reduction to bidiagonal form
*
CALL DTIMBR( LINE, NN, MVAL, NVAL, NK, KVAL, NNB, NBVAL, NXVAL,
$ NLDA, LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ),
$ D( 1, 1 ), D( 1, 2 ), A( 1, 3 ), RESLTS, LDR1,
$ LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'GE' ) ) THEN
*
* Routines for general matrices
*
CALL DTIMGE( LINE, NN, NVAL, NK, KVAL, NNB, NBVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ IWORK, RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
*
* General band matrices
*
IF( LDAMOK ) THEN
CALL DTIMGB( LINE, NM, MVAL, NN, NVAL, NK, KVAL, NNB, NBVAL,
$ NLDA, LDAVAL, TIMMIN, A( 1, 1 ),
$ A( LA-MKMAX+1, 3 ), IWORK, RESLTS, LDR1, LDR2,
$ LDR3, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )LINE( 1: 6 )
END IF
*
ELSE IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
* Routines for general tridiagonal matrices
*
CALL DTIMGT( LINE, NN, NVAL, NK, KVAL, NLDA, LDAVAL, TIMMIN,
$ A( 1, 1 ), A( 1, 2 ), IWORK, RESLTS, LDR1, LDR2,
$ LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'PO' ) ) THEN
*
* Positive definite matrices
*
CALL DTIMPO( LINE, NN, NVAL, NK, KVAL, NNB, NBVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ), IWORK,
$ RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN
*
* Positive definite packed matrices
*
CALL DTIMPP( LINE, NN, NVAL, NK, KVAL, LA, TIMMIN, A( 1, 1 ),
$ A( 1, 2 ), IWORK, RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
* Positive definite banded matrices
*
IF( LDAMOK ) THEN
IF( MKMAX.GT.LA ) THEN
J2 = 2
I2 = 2*LA - MKMAX + 1
ELSE
J2 = 3
I2 = LA - MKMAX + 1
END IF
CALL DTIMPB( LINE, NM, MVAL, NN, NVAL, NK, KVAL, NNB, NBVAL,
$ NLDA, LDAVAL, TIMMIN, A( 1, 1 ), A( I2, J2 ),
$ IWORK, RESLTS, LDR1, LDR2, LDR3, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )LINE( 1: 6 )
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
* Routines for positive definite tridiagonal matrices
*
CALL DTIMPT( LINE, NN, NVAL, NK, KVAL, NLDA, LDAVAL, TIMMIN,
$ A( 1, 1 ), A( 1, 2 ), RESLTS, LDR1, LDR2, LDR3,
$ NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'SY' ) ) THEN
*
* Symmetric indefinite matrices
*
CALL DTIMSY( LINE, NN, NVAL, NK, KVAL, NNB, NBVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ IWORK, RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
*
* Symmetric indefinite packed matrices
*
CALL DTIMSP( LINE, NN, NVAL, NK, KVAL, LA, TIMMIN, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), IWORK, RESLTS, LDR1, LDR2,
$ LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN
*
* Triangular matrices
*
CALL DTIMTR( LINE, NN, NVAL, NK, KVAL, NNB, NBVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ), RESLTS,
$ LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN
*
* Triangular packed matrices
*
CALL DTIMTP( LINE, NN, NVAL, NK, KVAL, LA, TIMMIN, A( 1, 1 ),
$ A( 1, 2 ), RESLTS, LDR1, LDR2, LDR3, NOUT )
*
ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
*
* Triangular band matrices
*
IF( LDAMOK ) THEN
IF( MKMAX.GT.LA ) THEN
J2 = 2
I2 = 2*LA - MKMAX + 1
ELSE
J2 = 3
I2 = LA - MKMAX + 1
END IF
CALL DTIMTB( LINE, NM, MVAL, NN, NVAL, NK, KVAL, NLDA,
$ LDAVAL, TIMMIN, A( 1, 1 ), A( I2, J2 ), RESLTS,
$ LDR1, LDR2, LDR3, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )LINE( 1: 6 )
END IF
*
ELSE IF( LSAMEN( 2, C2, 'LS' ) ) THEN
*
* Least squares drivers
*
CALL DTIMLS( LINE, NM, MVAL, NN, NVAL, NK, KVAL, NNB, NBVAL,
$ NXVAL, NLDA, LDAVAL, TIMMIN, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), A( 1, 4 ), S, S( NMAX+1 ), OPCTBL,
$ TIMTBL, FLPTBL, WORK, IWORK, NOUT )
*
ELSE
*
WRITE( NOUT, FMT = 9987 )LINE( 1: 6 )
END IF
*
* Read the next line of the input file.
*
READ( NIN, FMT = '(A)', END = 100 )LINE
GO TO 90
*
* Branch to this line when the last record is read.
*
100 CONTINUE
S2 = DSECND( )
WRITE( NOUT, FMT = 9986 )
WRITE( NOUT, FMT = 9985 )S2 - S1
110 CONTINUE
*
9999 FORMAT( ' Too many values of ', A, ' using ', A, ' = ', I2 )
9998 FORMAT( ' *** LDA = ', I7, ' is too small, must have ',
$ 'LDA > 0.' )
9997 FORMAT( ' *** ', A1, ' = ', I7, ' is too big: ',
$ 'maximum allowed is', I7 )
9996 FORMAT( ' *** N*NB is too big for N =', I6, ', NB =', I6,
$ / ' --> Increase LA to at least ', I8 )
9995 FORMAT( ' *** LDA*N is too big for the dense routines ', '(LDA =',
$ I6, ', N =', I6, ')', / ' --> Increase LA to at least ',
$ I8 )
9994 FORMAT( ' *** (LDA+K)*M is too big for the band routines ',
$ '(LDA=', I6, ', M=', I6, ', K=', I6, ')',
$ / ' --> Increase LA to at least ', I8 )
9993 FORMAT( ' The minimum time a subroutine will be timed = ', F6.3,
$ ' seconds' )
9992 FORMAT( ' The following parameter values will be used:' )
9991 FORMAT( 4X, A7, 1X, 10I6, / 12X, 10I6 )
9990 FORMAT( / ' ------------------------------',
$ / ' >>>>> Sample BLAS <<<<<',
$ / ' ------------------------------' )
9989 FORMAT( 1X, A6, ' not timed due to input errors', / )
9988 FORMAT( / ' ------------------------------',
$ / ' >>>>> Timing data <<<<<',
$ / ' ------------------------------' )
9987 FORMAT( 1X, A6, ': Unrecognized path or subroutine name', / )
9986 FORMAT( ' End of tests' )
9985 FORMAT( ' Total time used = ', F12.2, ' seconds' )
9984 FORMAT( / ' Tests not done due to input errors' )
9983 FORMAT( ' LAPACK VERSION 3.0, released June 30, 1999 ', / )
*
* End of DTIMAA
*
END
|