File: dtimls.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (660 lines) | stat: -rw-r--r-- 29,094 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
      SUBROUTINE DTIMLS( LINE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
     $                   NBVAL, NXVAL, NLDA, LDAVAL, TIMMIN, A, COPYA,
     $                   B, COPYB, S, COPYS, OPCTBL, TIMTBL, FLPTBL,
     $                   WORK, IWORK, NOUT )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     December 22, 1999
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            NLDA, NM, NN, NNB, NNS, NOUT
      DOUBLE PRECISION   TIMMIN
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), LDAVAL( * ), MVAL( * ), NBVAL( * ),
     $                   NSVAL( * ), NVAL( * ), NXVAL( * )
      DOUBLE PRECISION   A( * ), B( * ), COPYA( * ), COPYB( * ),
     $                   COPYS( * ), FLPTBL( 6, 6,
     $                   NM*NN*NNS*NLDA*( NNB+1 ), * ),
     $                   OPCTBL( 6, 6, NM*NN*NNS*NLDA*( NNB+1 ), * ),
     $                   S( * ), TIMTBL( 6, 6, NM*NN*NNS*NLDA*( NNB+1 ),
     $                   * ), WORK( * )
*     ..
*     .. Common blocks ..
      COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
      COMMON             / LSTIME / OPCNT, TIMNG
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Arrays in Common ..
      DOUBLE PRECISION   OPCNT( 6 ), TIMNG( 6 )
*     ..
*
*  Purpose
*  =======
*
*  DTIMLS times the least squares driver routines DGELS, SGELSS, SGELSX,
*  DGELSY and SGELSD.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          The input line that requested this routine.  The first six
*          characters contain either the name of a subroutine or a
*          generic path name.  The remaining characters may be used to
*          specify the individual routines to be timed.  See ATIMIN for
*          a full description of the format of the input line.
*
*  NM      (input) INTEGER
*          The number of values of M contained in the vector MVAL.
*
*  MVAL    (input) INTEGER array, dimension (NM)
*          The values of the matrix row dimension M.
*
*  NN      (input) INTEGER
*          The number of values of N contained in the vector NVAL.
*
*  NVAL    (input) INTEGER array, dimension (NN)
*          The values of the matrix column dimension N.
*
*  NNS     (input) INTEGER
*          The number of values of NRHS contained in the vector NSVAL.
*
*  NSVAL   (input) INTEGER array, dimension (NNS)
*          The values of the number of right hand sides NRHS.
*
*  NNB     (input) INTEGER
*          The number of values of NB and NX contained in the
*          vectors NBVAL and NXVAL.  The blocking parameters are used
*          in pairs (NB,NX).
*
*  NBVAL   (input) INTEGER array, dimension (NNB)
*          The values of the blocksize NB.
*
*  NXVAL   (input) INTEGER array, dimension (NNB)
*          The values of the crossover point NX.
*
*  NLDA    (input) INTEGER
*          The number of values of LDA contained in the vector LDAVAL.
*
*  LDAVAL  (input) INTEGER array, dimension (NLDA)
*          The values of the leading dimension of the array A.
*
*  TIMMIN  (input) DOUBLE PRECISION
*          The minimum time a subroutine will be timed.
*
*  A       (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
*          where MMAX is the maximum value of M in MVAL and NMAX is the
*          maximum value of N in NVAL.
*
*  COPYA   (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
*
*  B       (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX)
*          where MMAX is the maximum value of M in MVAL and NSMAX is the
*          maximum value of NRHS in NSVAL.
*
*  COPYB   (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX)
*
*  S       (workspace) DOUBLE PRECISION array, dimension
*                      (min(MMAX,NMAX))
*
*  COPYS   (workspace) DOUBLE PRECISION array, dimension
*                      (min(MMAX,NMAX))
*
*  OPZTBL  (workspace) DOUBLE PRECISION array, dimension
*                      (6,6,(NNB+1)*NLDA,NM*NN*NNS,5)
*
*  TIMTBL  (workspace) DOUBLE PRECISION array, dimension
*                      (6,6,(NNB+1)*NLDA,NM*NN*NNS,5)
*
*  FLPTBL  (workspace) DOUBLE PRECISION array, dimension
*                      (6,6,(NNB+1)*NLDA,NM*NN*NNS,5)
*
*  WORK    (workspace) DOUBLE PRECISION array,
*                      dimension (MMAX*NMAX + 4*NMAX + MMAX).
*
*  IWORK   (workspace) INTEGER array, dimension (NMAX)
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MTYPE, NSUBS
      PARAMETER          ( MTYPE = 6, NSUBS = 5 )
      INTEGER            SMLSIZ
      PARAMETER          ( SMLSIZ = 25 )
      DOUBLE PRECISION   ONE, TWO, ZERO
      PARAMETER          ( ONE = 1.0D0, TWO = 2.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANS
      CHARACTER*3        PATH
      INTEGER            CRANK, I, ILDA, IM, IN, INB, INFO, INS, IRANK,
     $                   ISCALE, ISUB, ITBL, ITRAN, ITYPE, LDA, LDB,
     $                   LDWORK, LWLSY, LWORK, M, MNMIN, N, NB, NCALL,
     $                   NCLS, NCLSD, NCLSS, NCLSX, NCLSY, NCOLS, NLVL,
     $                   NRHS, NROWS, RANK
      DOUBLE PRECISION   EPS, NORMA, NORMB, RCOND, S1, S2, TIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER*6        SUBNAM( NSUBS )
      INTEGER            ISEED( 4 ), ISEEDY( 4 ), NDATA( NSUBS )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DASUM, DLAMCH, DMFLOP, DSECND
      EXTERNAL           DASUM, DLAMCH, DMFLOP, DSECND
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMIN, DCOPY, DGELS, DGELSD, DGELSS, DGELSX,
     $                   DGELSY, DGEMM, DLACPY, DLARNV, DLASET, DQRT13,
     $                   DQRT15, DSCAL, DPRTLS, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, LOG, MAX, MIN, SQRT
*     ..
*     .. Scalars in Common ..
      LOGICAL            LERR, OK
      CHARACTER*6        SRNAMT
      INTEGER            INFOT, IOUNIT
*     ..
*     .. Common blocks ..
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'DGELS ', 'DGELSX', 'DGELSY',
     $                   'DGELSS', 'DGELSD' /
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
      DATA               NDATA / 4, 6, 6, 6, 5 /
*     ..
*     .. Executable Statements ..
*
*     Extract the timing request from the input line.
*
      PATH( 1: 1 ) = 'Double precision'
      PATH( 2: 3 ) = 'LS'
      CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
      IF( INFO.NE.0 )
     $   GO TO 230
*
*     Initialize constants and the random number seed.
*
      NCLS = 0
      NCLSD = 0
      NCLSS = 0
      NCLSX = 0
      NCLSY = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
      EPS = DLAMCH( 'Epsilon' )
*
*     Threshold for rank estimation
*
      RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
*
      INFOT = 0
      CALL XLAENV( 2, 2 )
      CALL XLAENV( 9, SMLSIZ )
*
      DO 200 IM = 1, NM
         M = MVAL( IM )
*
         DO 190 IN = 1, NN
            N = NVAL( IN )
            MNMIN = MIN( M, N )
*
            DO 180 INS = 1, NNS
               NRHS = NSVAL( INS )
               NLVL = MAX( INT( LOG( MAX( ONE, DBLE( MNMIN ) ) /
     $                DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1, 0 )
               LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
     $                 M*N+4*MNMIN+MAX( M, N ), 12*MNMIN+2*MNMIN*SMLSIZ+
     $                 8*MNMIN*NLVL+MNMIN*NRHS+(SMLSIZ+1)**2 )
*
               DO 170 ILDA = 1, NLDA
                  LDA = MAX( 1, LDAVAL( ILDA ) )
                  LDB = MAX( 1, LDAVAL( ILDA ), M, N )
*
                  DO 160 IRANK = 1, 2
*
                     DO 150 ISCALE = 1, 3
*
                        IF( IRANK.EQ.1 .AND. TIMSUB( 1 ) ) THEN
*
*                          Time DGELS
*
*                          Generate a matrix of scaling type ISCALE
*
                           CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
     $                                  ISEED )
                           DO 50 INB = 1, NNB
                              NB = NBVAL( INB )
                              CALL XLAENV( 1, NB )
                              CALL XLAENV( 3, NXVAL( INB ) )
*
                              DO 40 ITRAN = 1, 2
                                 ITYPE = ( ITRAN-1 )*3 + ISCALE
                                 IF( ITRAN.EQ.1 ) THEN
                                    TRANS = 'N'
                                    NROWS = M
                                    NCOLS = N
                                 ELSE
                                    TRANS = 'T'
                                    NROWS = N
                                    NCOLS = M
                                 END IF
                                 LDWORK = MAX( 1, NCOLS )
*
*                                Set up a consistent rhs
*
                                 IF( NCOLS.GT.0 ) THEN
                                    CALL DLARNV( 2, ISEED, NCOLS*NRHS,
     $                                           WORK )
                                    CALL DSCAL( NCOLS*NRHS,
     $                                          ONE / DBLE( NCOLS ),
     $                                          WORK, 1 )
                                 END IF
                                 CALL DGEMM( TRANS, 'No transpose',
     $                                       NROWS, NRHS, NCOLS, ONE,
     $                                       COPYA, LDA, WORK, LDWORK,
     $                                       ZERO, B, LDB )
                                 CALL DLACPY( 'Full', NROWS, NRHS, B,
     $                                        LDB, COPYB, LDB )
*
*                                Solve LS or overdetermined system
*
                                 NCALL = 0
                                 TIME = ZERO
                                 CALL DLASET( 'Full', NDATA( 1 ), 1,
     $                                        ZERO, ZERO, OPCNT,
     $                                        NDATA( 1 ) )
                                 CALL DLASET( 'Full', NDATA( 1 ), 1,
     $                                        ZERO, ZERO, TIMNG,
     $                                        NDATA( 1 ) )
   20                            CONTINUE
                                 IF( M.GT.0 .AND. N.GT.0 ) THEN
                                    CALL DLACPY( 'Full', M, N, COPYA,
     $                                           LDA, A, LDA )
                                    CALL DLACPY( 'Full', NROWS, NRHS,
     $                                           COPYB, LDB, B, LDB )
                                 END IF
                                 SRNAMT = 'DGELS '
                                 NCALL = NCALL + 1
                                 S1 = DSECND( )
                                 CALL DGELS( TRANS, M, N, NRHS, A, LDA,
     $                                       B, LDB, WORK, LWORK, INFO )
                                 S2 = DSECND( )
                                 TIME = TIME + ( S2-S1 )
                                 IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
     $                              GO TO 20
                                 TIMNG( 1 ) = TIME
                                 OPCNT( 1 ) = DASUM( NDATA( 1 ), OPCNT,
     $                                        1 )
                                 CALL DSCAL( NDATA( 1 ),
     $                                       ONE / DBLE( NCALL ), OPCNT,
     $                                       1 )
                                 CALL DSCAL( NDATA( 1 ),
     $                                       ONE / DBLE( NCALL ), TIMNG,
     $                                       1 )
                                 CALL DCOPY( NDATA( 1 ), OPCNT, 1,
     $                                       OPCTBL( 1, ITYPE, NCLS+INB,
     $                                       1 ), 1 )
                                 CALL DCOPY( NDATA( 1 ), TIMNG, 1,
     $                                       TIMTBL( 1, ITYPE, NCLS+INB,
     $                                       1 ), 1 )
                                 DO 30 I = 1, NDATA( 1 )
                                    FLPTBL( I, ITYPE, NCLS+INB,
     $                                 1 ) = DMFLOP( OPCNT( I ),
     $                                 TIMNG( I ), INFO )
   30                            CONTINUE
   40                         CONTINUE
   50                      CONTINUE
*
                        END IF
*
*                       Generate a matrix of scaling type ISCALE and
*                       rank type IRANK.
*
                        ITYPE = ( IRANK-1 )*3 + ISCALE
                        CALL DQRT15( ISCALE, IRANK, M, N, NRHS, COPYA,
     $                               LDA, COPYB, LDB, COPYS, RANK,
     $                               NORMA, NORMB, ISEED, WORK, LWORK )
*
                        IF( TIMSUB( 2 ) ) THEN
*
*                       Time DGELSX
*
*                       workspace used:
*                       MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
                           LDWORK = MAX( 1, M )
*
*                       DGELSX:  Compute the minimum-norm
*                       solution X to min( norm( A * X - B ) )
*                       using a complete orthogonal factorization.
*
                           NCALL = 0
                           TIME = ZERO
                           CALL DLASET( 'Full', NDATA( 2 ), 1, ZERO,
     $                                  ZERO, OPCNT, NDATA( 2 ) )
                           CALL DLASET( 'Full', NDATA( 2 ), 1, ZERO,
     $                                  ZERO, TIMNG, NDATA( 2 ) )
   60                      CONTINUE
                           CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
     $                                  LDA )
                           CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
     $                                  LDB )
                           SRNAMT = 'DGELSX'
                           NCALL = NCALL + 1
                           S1 = DSECND( )
                           CALL DGELSX( M, N, NRHS, A, LDA, B, LDB,
     $                                  IWORK, RCOND, CRANK, WORK,
     $                                  INFO )
                           S2 = DSECND( )
                           TIME = TIME + ( S2-S1 )
                           IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
     $                        GO TO 60
                           TIMNG( 1 ) = TIME
                           OPCNT( 1 ) = DASUM( NDATA( 2 ), OPCNT, 1 )
                           CALL DSCAL( NDATA( 2 ), ONE / DBLE( NCALL ),
     $                                 OPCNT, 1 )
                           CALL DSCAL( NDATA( 2 ), ONE / DBLE( NCALL ),
     $                                 TIMNG, 1 )
                           CALL DCOPY( NDATA( 2 ), OPCNT, 1,
     $                                 OPCTBL( 1, ITYPE, NCLSX+1, 2 ),
     $                                 1 )
                           CALL DCOPY( NDATA( 2 ), TIMNG, 1,
     $                                 TIMTBL( 1, ITYPE, NCLSX+1, 2 ),
     $                                 1 )
                           DO 70 I = 1, NDATA( 2 )
                              FLPTBL( I, ITYPE, NCLSX+1,
     $                           2 ) = DMFLOP( OPCNT( I ), TIMNG( I ),
     $                           INFO )
   70                      CONTINUE
*
                        END IF
*
*                       Loop for timing different block sizes.
*
                        DO 140 INB = 1, NNB
                           NB = NBVAL( INB )
                           CALL XLAENV( 1, NB )
                           CALL XLAENV( 3, NXVAL( INB ) )
*
                           IF( TIMSUB( 3 ) ) THEN
*
*                          Time DGELSY
*
*                          DGELSY:  Compute the minimum-norm solution X
*                          to min( norm( A * X - B ) ) using the
*                          rank-revealing orthogonal factorization.
*
*                          Set LWLSY to the adequate value.
*
                              LWLSY = MAX( 1, MNMIN+2*N+NB*( N+1 ),
     $                                2*MNMIN+NB*NRHS )
*
                              NCALL = 0
                              TIME = ZERO
                              CALL DLASET( 'Full', NDATA( 3 ), 1, ZERO,
     $                                     ZERO, OPCNT, NDATA( 3 ) )
                              CALL DLASET( 'Full', NDATA( 3 ), 1, ZERO,
     $                                     ZERO, TIMNG, NDATA( 3 ) )
   80                         CONTINUE
                              CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
     $                                     LDA )
                              CALL DLACPY( 'Full', M, NRHS, COPYB, LDB,
     $                                     B, LDB )
                              SRNAMT = 'DGELSY'
                              NCALL = NCALL + 1
                              S1 = DSECND( )
                              CALL DGELSY( M, N, NRHS, A, LDA, B, LDB,
     $                                     IWORK, RCOND, CRANK, WORK,
     $                                     LWLSY, INFO )
                              S2 = DSECND( )
                              TIME = TIME + ( S2-S1 )
                              IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
     $                           GO TO 80
                              TIMNG( 1 ) = TIME
                              OPCNT( 1 ) = DASUM( NDATA( 3 ), OPCNT, 1 )
                              CALL DSCAL( NDATA( 3 ),
     $                                    ONE / DBLE( NCALL ), OPCNT,
     $                                    1 )
                              CALL DSCAL( NDATA( 3 ),
     $                                    ONE / DBLE( NCALL ), TIMNG,
     $                                    1 )
                              CALL DCOPY( NDATA( 3 ), OPCNT, 1,
     $                                    OPCTBL( 1, ITYPE, NCLSY+INB,
     $                                    3 ), 1 )
                              CALL DCOPY( NDATA( 3 ), TIMNG, 1,
     $                                    TIMTBL( 1, ITYPE, NCLSY+INB,
     $                                    3 ), 1 )
                              DO 90 I = 1, NDATA( 3 )
                                 FLPTBL( I, ITYPE, NCLSY+INB,
     $                              3 ) = DMFLOP( OPCNT( I ),
     $                              TIMNG( I ), INFO )
   90                         CONTINUE
*
                           END IF
*
                           IF( TIMSUB( 4 ) ) THEN
*
*                          Time DGELSS
*
*                          DGELSS:  Compute the minimum-norm solution X
*                          to min( norm( A * X - B ) ) using the SVD.
*
                              NCALL = 0
                              TIME = ZERO
                              CALL DLASET( 'Full', NDATA( 4 ), 1, ZERO,
     $                                     ZERO, OPCNT, NDATA( 4 ) )
                              CALL DLASET( 'Full', NDATA( 4 ), 1, ZERO,
     $                                     ZERO, TIMNG, NDATA( 4 ) )
  100                         CONTINUE
                              CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
     $                                     LDA )
                              CALL DLACPY( 'Full', M, NRHS, COPYB, LDB,
     $                                     B, LDB )
                              SRNAMT = 'DGELSS'
                              NCALL = NCALL + 1
                              S1 = DSECND( )
                              CALL DGELSS( M, N, NRHS, A, LDA, B, LDB,
     $                                     S, RCOND, CRANK, WORK, LWORK,
     $                                     INFO )
                              S2 = DSECND( )
                              TIME = TIME + ( S2-S1 )
                              IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
     $                           GO TO 100
                              TIMNG( 1 ) = TIME
                              OPCNT( 1 ) = DASUM( NDATA( 4 ), OPCNT, 1 )
                              CALL DSCAL( NDATA( 4 ),
     $                                    ONE / DBLE( NCALL ), OPCNT,
     $                                    1 )
                              CALL DSCAL( NDATA( 4 ),
     $                                    ONE / DBLE( NCALL ), TIMNG,
     $                                    1 )
                              CALL DCOPY( NDATA( 4 ), OPCNT, 1,
     $                                    OPCTBL( 1, ITYPE, NCLSS+INB,
     $                                    4 ), 1 )
                              CALL DCOPY( NDATA( 4 ), TIMNG, 1,
     $                                    TIMTBL( 1, ITYPE, NCLSS+INB,
     $                                    4 ), 1 )
                              DO 110 I = 1, NDATA( 4 )
                                 FLPTBL( I, ITYPE, NCLSS+INB,
     $                              4 ) = DMFLOP( OPCNT( I ),
     $                              TIMNG( I ), INFO )
  110                         CONTINUE
*
                           END IF
*
                           IF( TIMSUB( 5 ) ) THEN
*
*                          Time DGELSD
*
*                          DGELSD:  Compute the minimum-norm solution X
*                          to min( norm( A * X - B ) ) using a
*                          divide-and-conquer SVD.
*
                              NCALL = 0
                              TIME = ZERO
                              CALL DLASET( 'Full', NDATA( 5 ), 1, ZERO,
     $                                     ZERO, OPCNT, NDATA( 5 ) )
                              CALL DLASET( 'Full', NDATA( 5 ), 1, ZERO,
     $                                     ZERO, TIMNG, NDATA( 5 ) )
  120                         CONTINUE
                              CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
     $                                     LDA )
                              CALL DLACPY( 'Full', M, NRHS, COPYB, LDB,
     $                                     B, LDB )
                              SRNAMT = 'DGELSD'
                              NCALL = NCALL + 1
                              S1 = DSECND( )
                              CALL DGELSD( M, N, NRHS, A, LDA, B, LDB,
     $                                     S, RCOND, CRANK, WORK, LWORK,
     $                                     IWORK, INFO )
                              S2 = DSECND( )
                              TIME = TIME + ( S2-S1 )
                              IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
     $                           GO TO 120
                              TIMNG( 1 ) = TIME
                              OPCNT( 1 ) = DASUM( NDATA( 5 ), OPCNT, 1 )
                              CALL DSCAL( NDATA( 5 ),
     $                                    ONE / DBLE( NCALL ), OPCNT,
     $                                    1 )
                              CALL DSCAL( NDATA( 5 ),
     $                                    ONE / DBLE( NCALL ), TIMNG,
     $                                    1 )
                              CALL DCOPY( NDATA( 5 ), OPCNT, 1,
     $                                    OPCTBL( 1, ITYPE, NCLSD+INB,
     $                                    5 ), 1 )
                              CALL DCOPY( NDATA( 5 ), TIMNG, 1,
     $                                    TIMTBL( 1, ITYPE, NCLSD+INB,
     $                                    5 ), 1 )
                              DO 130 I = 1, NDATA( 5 )
                                 FLPTBL( I, ITYPE, NCLSD+INB,
     $                              5 ) = DMFLOP( OPCNT( I ),
     $                              TIMNG( I ), INFO )
  130                         CONTINUE
*
                           END IF
*
  140                   CONTINUE
  150                CONTINUE
  160             CONTINUE
                  NCLS = NCLS + NNB
                  NCLSY = NCLSY + NNB
                  NCLSS = NCLSS + NNB
                  NCLSD = NCLSD + NNB
  170          CONTINUE
               NCLSX = NCLSX + 1
  180       CONTINUE
  190    CONTINUE
  200 CONTINUE
*
*     Print a summary of the results.
*
      DO 220 ISUB = 1, NSUBS
         IF( TIMSUB( ISUB ) ) THEN
            WRITE( NOUT, FMT = 9999 )SUBNAM( ISUB )
            IF( ISUB.EQ.1 ) THEN
               WRITE( NOUT, FMT = 9998 )
            ELSE IF( ISUB.EQ.2 ) THEN
               WRITE( NOUT, FMT = 9997 )
            ELSE IF( ISUB.EQ.3 ) THEN
               WRITE( NOUT, FMT = 9996 )
            ELSE IF( ISUB.EQ.4 ) THEN
               WRITE( NOUT, FMT = 9995 )
            ELSE IF( ISUB.EQ.5 ) THEN
               WRITE( NOUT, FMT = 9994 )
            END IF
            DO 210 ITBL = 1, 3
               IF( ITBL.EQ.1 ) THEN
                  WRITE( NOUT, FMT = 9993 )
                  CALL DPRTLS( ISUB, SUBNAM( ISUB ), NDATA( ISUB ), NM,
     $                         MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL,
     $                         NXVAL, NLDA, LDAVAL, MTYPE,
     $                         TIMTBL( 1, 1, 1, ISUB ), NOUT )
               ELSE IF( ITBL.EQ.2 ) THEN
                  WRITE( NOUT, FMT = 9992 )
                  CALL DPRTLS( ISUB, SUBNAM( ISUB ), NDATA( ISUB ), NM,
     $                         MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL,
     $                         NXVAL, NLDA, LDAVAL, MTYPE,
     $                         OPCTBL( 1, 1, 1, ISUB ), NOUT )
               ELSE IF( ITBL.EQ.3 ) THEN
                  WRITE( NOUT, FMT = 9991 )
                  CALL DPRTLS( ISUB, SUBNAM( ISUB ), NDATA( ISUB ), NM,
     $                         MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL,
     $                         NXVAL, NLDA, LDAVAL, MTYPE,
     $                         FLPTBL( 1, 1, 1, ISUB ), NOUT )
               END IF
  210       CONTINUE
         END IF
  220 CONTINUE
*
  230 CONTINUE
 9999 FORMAT( / / / ' ****** Results for ', A, ' ******' )
 9998 FORMAT( / ' DGELS   : overall performance',
     $      / ' comp. 1 : if M>=N, DGEQRF, QR factorization',
     $      / '           if M< N, DGELQF, QR factorization',
     $      / ' comp. 2 : if M>=N, DORMQR, multiplication by',
     $      ' reflectors', /
     $      '           if M< N, DORMLQ, multiplication by',
     $      ' reflectors', /
     $      ' comp. 3 : DTRSM, solution of the triangular', ' system',
     $      / / ' Types 4 to 6 are the transpose', ' of types 1 to 3' )
 9997 FORMAT( / ' DGELSX  : overall performance',
     $      / ' comp. 1 : DGEQPF, QR factorization with column',
     $      ' pivoting', / ' comp. 2 : if RANK<N, DTZRQF, reduction to',
     $      ' triangular form', /
     $      ' comp. 3 : DORM2R, multiplication by reflectors',
     $      / ' comp. 4 : DTRSM, solution of the triangular', ' system',
     $      / ' comp. 5 : if RANK<N, DLATZM, multiplication by',
     $      ' reflectors' )
 9996 FORMAT( / ' DGELSY  : overall performance',
     $      / ' comp. 1 : DGEQP3, QR factorization with column',
     $      ' pivoting', / ' comp. 2 : if RANK<N, DTZRZF, reduction to',
     $      ' triangular form', /
     $      ' comp. 3 : DORMQR, multiplication by reflectors',
     $      / ' comp. 4 : DTRSM, solution of the triangular', ' system',
     $      / ' comp. 5 : if RANK<N, DORMRZ, multiplication by',
     $      ' reflectors' )
 9995 FORMAT( / ' DGELSS: overall performance',
     $      / ' comp. 1 : if M>>N, DGEQRF, QR factorization',
     $      / '                    DORMQR, multiplication by',
     $      ' reflectors', /
     $      '           if N>>M, DGELQF, QL factorization',
     $      / ' comp. 2 : DGEBRD, reduction to bidiagonal form',
     $      / ' comp. 3 : DORMBR, multiplication by left',
     $      ' bidiagonalizing vectors', /
     $      '           DORGBR, generation of right',
     $      ' bidiagonalizing vectors', /
     $      ' comp. 4 : DBDSQR, singular value decomposition',
     $      ' of the bidiagonal matrix',
     $      / ' comp. 5 : multiplication by right bidiagonalizing',
     $      ' vectors', /
     $      '           (DGEMM or SGEMV, and DORMLQ if N>>M)' )
 9994 FORMAT( / ' DGELSD: overall performance',
     $      / ' comp. 1 : if M>>N, DGEQRF, QR factorization',
     $      / '                    DORMQR, multiplication by',
     $      ' reflectors', /
     $      '           if N>>M, DGELQF, QL factorization',
     $      / ' comp. 2 : DGEBRD, reduction to bidiagonal form',
     $      / ' comp. 3 : DORMBR, multiplication by left ',
     $      ' bidiagonalizing vectors', /
     $      '                   multiplication by right',
     $      ' bidiagonalizing vectors', /
     $      ' comp. 4 : DLALSD, singular value decomposition',
     $      ' of the bidiagonal matrix' )
 9993 FORMAT( / / ' *** Time in seconds *** ' )
 9992 FORMAT( / / ' *** Number of floating-point operations *** ' )
 9991 FORMAT( / / ' *** Speed in megaflops *** ' )
      RETURN
*
*     End of DTIMLS
*
      END