1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
SUBROUTINE DTIMLS( LINE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ NBVAL, NXVAL, NLDA, LDAVAL, TIMMIN, A, COPYA,
$ B, COPYB, S, COPYS, OPCTBL, TIMTBL, FLPTBL,
$ WORK, IWORK, NOUT )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* December 22, 1999
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER NLDA, NM, NN, NNB, NNS, NOUT
DOUBLE PRECISION TIMMIN
* ..
* .. Array Arguments ..
INTEGER IWORK( * ), LDAVAL( * ), MVAL( * ), NBVAL( * ),
$ NSVAL( * ), NVAL( * ), NXVAL( * )
DOUBLE PRECISION A( * ), B( * ), COPYA( * ), COPYB( * ),
$ COPYS( * ), FLPTBL( 6, 6,
$ NM*NN*NNS*NLDA*( NNB+1 ), * ),
$ OPCTBL( 6, 6, NM*NN*NNS*NLDA*( NNB+1 ), * ),
$ S( * ), TIMTBL( 6, 6, NM*NN*NNS*NLDA*( NNB+1 ),
$ * ), WORK( * )
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, IOUNIT, OK, LERR
COMMON / LSTIME / OPCNT, TIMNG
COMMON / SRNAMC / SRNAMT
* ..
* .. Arrays in Common ..
DOUBLE PRECISION OPCNT( 6 ), TIMNG( 6 )
* ..
*
* Purpose
* =======
*
* DTIMLS times the least squares driver routines DGELS, SGELSS, SGELSX,
* DGELSY and SGELSD.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* The input line that requested this routine. The first six
* characters contain either the name of a subroutine or a
* generic path name. The remaining characters may be used to
* specify the individual routines to be timed. See ATIMIN for
* a full description of the format of the input line.
*
* NM (input) INTEGER
* The number of values of M contained in the vector MVAL.
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix row dimension M.
*
* NN (input) INTEGER
* The number of values of N contained in the vector NVAL.
*
* NVAL (input) INTEGER array, dimension (NN)
* The values of the matrix column dimension N.
*
* NNS (input) INTEGER
* The number of values of NRHS contained in the vector NSVAL.
*
* NSVAL (input) INTEGER array, dimension (NNS)
* The values of the number of right hand sides NRHS.
*
* NNB (input) INTEGER
* The number of values of NB and NX contained in the
* vectors NBVAL and NXVAL. The blocking parameters are used
* in pairs (NB,NX).
*
* NBVAL (input) INTEGER array, dimension (NNB)
* The values of the blocksize NB.
*
* NXVAL (input) INTEGER array, dimension (NNB)
* The values of the crossover point NX.
*
* NLDA (input) INTEGER
* The number of values of LDA contained in the vector LDAVAL.
*
* LDAVAL (input) INTEGER array, dimension (NLDA)
* The values of the leading dimension of the array A.
*
* TIMMIN (input) DOUBLE PRECISION
* The minimum time a subroutine will be timed.
*
* A (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
* where MMAX is the maximum value of M in MVAL and NMAX is the
* maximum value of N in NVAL.
*
* COPYA (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
*
* B (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX)
* where MMAX is the maximum value of M in MVAL and NSMAX is the
* maximum value of NRHS in NSVAL.
*
* COPYB (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX)
*
* S (workspace) DOUBLE PRECISION array, dimension
* (min(MMAX,NMAX))
*
* COPYS (workspace) DOUBLE PRECISION array, dimension
* (min(MMAX,NMAX))
*
* OPZTBL (workspace) DOUBLE PRECISION array, dimension
* (6,6,(NNB+1)*NLDA,NM*NN*NNS,5)
*
* TIMTBL (workspace) DOUBLE PRECISION array, dimension
* (6,6,(NNB+1)*NLDA,NM*NN*NNS,5)
*
* FLPTBL (workspace) DOUBLE PRECISION array, dimension
* (6,6,(NNB+1)*NLDA,NM*NN*NNS,5)
*
* WORK (workspace) DOUBLE PRECISION array,
* dimension (MMAX*NMAX + 4*NMAX + MMAX).
*
* IWORK (workspace) INTEGER array, dimension (NMAX)
*
* NOUT (input) INTEGER
* The unit number for output.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MTYPE, NSUBS
PARAMETER ( MTYPE = 6, NSUBS = 5 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, TWO, ZERO
PARAMETER ( ONE = 1.0D0, TWO = 2.0D0, ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
CHARACTER TRANS
CHARACTER*3 PATH
INTEGER CRANK, I, ILDA, IM, IN, INB, INFO, INS, IRANK,
$ ISCALE, ISUB, ITBL, ITRAN, ITYPE, LDA, LDB,
$ LDWORK, LWLSY, LWORK, M, MNMIN, N, NB, NCALL,
$ NCLS, NCLSD, NCLSS, NCLSX, NCLSY, NCOLS, NLVL,
$ NRHS, NROWS, RANK
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND, S1, S2, TIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER*6 SUBNAM( NSUBS )
INTEGER ISEED( 4 ), ISEEDY( 4 ), NDATA( NSUBS )
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, DMFLOP, DSECND
EXTERNAL DASUM, DLAMCH, DMFLOP, DSECND
* ..
* .. External Subroutines ..
EXTERNAL ATIMIN, DCOPY, DGELS, DGELSD, DGELSS, DGELSX,
$ DGELSY, DGEMM, DLACPY, DLARNV, DLASET, DQRT13,
$ DQRT15, DSCAL, DPRTLS, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, LOG, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
INTEGER INFOT, IOUNIT
* ..
* .. Common blocks ..
* ..
* .. Data statements ..
DATA SUBNAM / 'DGELS ', 'DGELSX', 'DGELSY',
$ 'DGELSS', 'DGELSD' /
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA NDATA / 4, 6, 6, 6, 5 /
* ..
* .. Executable Statements ..
*
* Extract the timing request from the input line.
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'LS'
CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( INFO.NE.0 )
$ GO TO 230
*
* Initialize constants and the random number seed.
*
NCLS = 0
NCLSD = 0
NCLSS = 0
NCLSX = 0
NCLSY = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = DLAMCH( 'Epsilon' )
*
* Threshold for rank estimation
*
RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
*
INFOT = 0
CALL XLAENV( 2, 2 )
CALL XLAENV( 9, SMLSIZ )
*
DO 200 IM = 1, NM
M = MVAL( IM )
*
DO 190 IN = 1, NN
N = NVAL( IN )
MNMIN = MIN( M, N )
*
DO 180 INS = 1, NNS
NRHS = NSVAL( INS )
NLVL = MAX( INT( LOG( MAX( ONE, DBLE( MNMIN ) ) /
$ DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1, 0 )
LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
$ M*N+4*MNMIN+MAX( M, N ), 12*MNMIN+2*MNMIN*SMLSIZ+
$ 8*MNMIN*NLVL+MNMIN*NRHS+(SMLSIZ+1)**2 )
*
DO 170 ILDA = 1, NLDA
LDA = MAX( 1, LDAVAL( ILDA ) )
LDB = MAX( 1, LDAVAL( ILDA ), M, N )
*
DO 160 IRANK = 1, 2
*
DO 150 ISCALE = 1, 3
*
IF( IRANK.EQ.1 .AND. TIMSUB( 1 ) ) THEN
*
* Time DGELS
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 50 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
DO 40 ITRAN = 1, 2
ITYPE = ( ITRAN-1 )*3 + ISCALE
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL DLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL DSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ),
$ WORK, 1 )
END IF
CALL DGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, ONE,
$ COPYA, LDA, WORK, LDWORK,
$ ZERO, B, LDB )
CALL DLACPY( 'Full', NROWS, NRHS, B,
$ LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
NCALL = 0
TIME = ZERO
CALL DLASET( 'Full', NDATA( 1 ), 1,
$ ZERO, ZERO, OPCNT,
$ NDATA( 1 ) )
CALL DLASET( 'Full', NDATA( 1 ), 1,
$ ZERO, ZERO, TIMNG,
$ NDATA( 1 ) )
20 CONTINUE
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL DLACPY( 'Full', M, N, COPYA,
$ LDA, A, LDA )
CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'DGELS '
NCALL = NCALL + 1
S1 = DSECND( )
CALL DGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WORK, LWORK, INFO )
S2 = DSECND( )
TIME = TIME + ( S2-S1 )
IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
$ GO TO 20
TIMNG( 1 ) = TIME
OPCNT( 1 ) = DASUM( NDATA( 1 ), OPCNT,
$ 1 )
CALL DSCAL( NDATA( 1 ),
$ ONE / DBLE( NCALL ), OPCNT,
$ 1 )
CALL DSCAL( NDATA( 1 ),
$ ONE / DBLE( NCALL ), TIMNG,
$ 1 )
CALL DCOPY( NDATA( 1 ), OPCNT, 1,
$ OPCTBL( 1, ITYPE, NCLS+INB,
$ 1 ), 1 )
CALL DCOPY( NDATA( 1 ), TIMNG, 1,
$ TIMTBL( 1, ITYPE, NCLS+INB,
$ 1 ), 1 )
DO 30 I = 1, NDATA( 1 )
FLPTBL( I, ITYPE, NCLS+INB,
$ 1 ) = DMFLOP( OPCNT( I ),
$ TIMNG( I ), INFO )
30 CONTINUE
40 CONTINUE
50 CONTINUE
*
END IF
*
* Generate a matrix of scaling type ISCALE and
* rank type IRANK.
*
ITYPE = ( IRANK-1 )*3 + ISCALE
CALL DQRT15( ISCALE, IRANK, M, N, NRHS, COPYA,
$ LDA, COPYB, LDB, COPYS, RANK,
$ NORMA, NORMB, ISEED, WORK, LWORK )
*
IF( TIMSUB( 2 ) ) THEN
*
* Time DGELSX
*
* workspace used:
* MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
LDWORK = MAX( 1, M )
*
* DGELSX: Compute the minimum-norm
* solution X to min( norm( A * X - B ) )
* using a complete orthogonal factorization.
*
NCALL = 0
TIME = ZERO
CALL DLASET( 'Full', NDATA( 2 ), 1, ZERO,
$ ZERO, OPCNT, NDATA( 2 ) )
CALL DLASET( 'Full', NDATA( 2 ), 1, ZERO,
$ ZERO, TIMNG, NDATA( 2 ) )
60 CONTINUE
CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
$ LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
SRNAMT = 'DGELSX'
NCALL = NCALL + 1
S1 = DSECND( )
CALL DGELSX( M, N, NRHS, A, LDA, B, LDB,
$ IWORK, RCOND, CRANK, WORK,
$ INFO )
S2 = DSECND( )
TIME = TIME + ( S2-S1 )
IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
$ GO TO 60
TIMNG( 1 ) = TIME
OPCNT( 1 ) = DASUM( NDATA( 2 ), OPCNT, 1 )
CALL DSCAL( NDATA( 2 ), ONE / DBLE( NCALL ),
$ OPCNT, 1 )
CALL DSCAL( NDATA( 2 ), ONE / DBLE( NCALL ),
$ TIMNG, 1 )
CALL DCOPY( NDATA( 2 ), OPCNT, 1,
$ OPCTBL( 1, ITYPE, NCLSX+1, 2 ),
$ 1 )
CALL DCOPY( NDATA( 2 ), TIMNG, 1,
$ TIMTBL( 1, ITYPE, NCLSX+1, 2 ),
$ 1 )
DO 70 I = 1, NDATA( 2 )
FLPTBL( I, ITYPE, NCLSX+1,
$ 2 ) = DMFLOP( OPCNT( I ), TIMNG( I ),
$ INFO )
70 CONTINUE
*
END IF
*
* Loop for timing different block sizes.
*
DO 140 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
IF( TIMSUB( 3 ) ) THEN
*
* Time DGELSY
*
* DGELSY: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using the
* rank-revealing orthogonal factorization.
*
* Set LWLSY to the adequate value.
*
LWLSY = MAX( 1, MNMIN+2*N+NB*( N+1 ),
$ 2*MNMIN+NB*NRHS )
*
NCALL = 0
TIME = ZERO
CALL DLASET( 'Full', NDATA( 3 ), 1, ZERO,
$ ZERO, OPCNT, NDATA( 3 ) )
CALL DLASET( 'Full', NDATA( 3 ), 1, ZERO,
$ ZERO, TIMNG, NDATA( 3 ) )
80 CONTINUE
CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
$ LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB,
$ B, LDB )
SRNAMT = 'DGELSY'
NCALL = NCALL + 1
S1 = DSECND( )
CALL DGELSY( M, N, NRHS, A, LDA, B, LDB,
$ IWORK, RCOND, CRANK, WORK,
$ LWLSY, INFO )
S2 = DSECND( )
TIME = TIME + ( S2-S1 )
IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
$ GO TO 80
TIMNG( 1 ) = TIME
OPCNT( 1 ) = DASUM( NDATA( 3 ), OPCNT, 1 )
CALL DSCAL( NDATA( 3 ),
$ ONE / DBLE( NCALL ), OPCNT,
$ 1 )
CALL DSCAL( NDATA( 3 ),
$ ONE / DBLE( NCALL ), TIMNG,
$ 1 )
CALL DCOPY( NDATA( 3 ), OPCNT, 1,
$ OPCTBL( 1, ITYPE, NCLSY+INB,
$ 3 ), 1 )
CALL DCOPY( NDATA( 3 ), TIMNG, 1,
$ TIMTBL( 1, ITYPE, NCLSY+INB,
$ 3 ), 1 )
DO 90 I = 1, NDATA( 3 )
FLPTBL( I, ITYPE, NCLSY+INB,
$ 3 ) = DMFLOP( OPCNT( I ),
$ TIMNG( I ), INFO )
90 CONTINUE
*
END IF
*
IF( TIMSUB( 4 ) ) THEN
*
* Time DGELSS
*
* DGELSS: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using the SVD.
*
NCALL = 0
TIME = ZERO
CALL DLASET( 'Full', NDATA( 4 ), 1, ZERO,
$ ZERO, OPCNT, NDATA( 4 ) )
CALL DLASET( 'Full', NDATA( 4 ), 1, ZERO,
$ ZERO, TIMNG, NDATA( 4 ) )
100 CONTINUE
CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
$ LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB,
$ B, LDB )
SRNAMT = 'DGELSS'
NCALL = NCALL + 1
S1 = DSECND( )
CALL DGELSS( M, N, NRHS, A, LDA, B, LDB,
$ S, RCOND, CRANK, WORK, LWORK,
$ INFO )
S2 = DSECND( )
TIME = TIME + ( S2-S1 )
IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
$ GO TO 100
TIMNG( 1 ) = TIME
OPCNT( 1 ) = DASUM( NDATA( 4 ), OPCNT, 1 )
CALL DSCAL( NDATA( 4 ),
$ ONE / DBLE( NCALL ), OPCNT,
$ 1 )
CALL DSCAL( NDATA( 4 ),
$ ONE / DBLE( NCALL ), TIMNG,
$ 1 )
CALL DCOPY( NDATA( 4 ), OPCNT, 1,
$ OPCTBL( 1, ITYPE, NCLSS+INB,
$ 4 ), 1 )
CALL DCOPY( NDATA( 4 ), TIMNG, 1,
$ TIMTBL( 1, ITYPE, NCLSS+INB,
$ 4 ), 1 )
DO 110 I = 1, NDATA( 4 )
FLPTBL( I, ITYPE, NCLSS+INB,
$ 4 ) = DMFLOP( OPCNT( I ),
$ TIMNG( I ), INFO )
110 CONTINUE
*
END IF
*
IF( TIMSUB( 5 ) ) THEN
*
* Time DGELSD
*
* DGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide-and-conquer SVD.
*
NCALL = 0
TIME = ZERO
CALL DLASET( 'Full', NDATA( 5 ), 1, ZERO,
$ ZERO, OPCNT, NDATA( 5 ) )
CALL DLASET( 'Full', NDATA( 5 ), 1, ZERO,
$ ZERO, TIMNG, NDATA( 5 ) )
120 CONTINUE
CALL DLACPY( 'Full', M, N, COPYA, LDA, A,
$ LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB,
$ B, LDB )
SRNAMT = 'DGELSD'
NCALL = NCALL + 1
S1 = DSECND( )
CALL DGELSD( M, N, NRHS, A, LDA, B, LDB,
$ S, RCOND, CRANK, WORK, LWORK,
$ IWORK, INFO )
S2 = DSECND( )
TIME = TIME + ( S2-S1 )
IF( INFO.EQ.0 .AND. TIME.LT.TIMMIN )
$ GO TO 120
TIMNG( 1 ) = TIME
OPCNT( 1 ) = DASUM( NDATA( 5 ), OPCNT, 1 )
CALL DSCAL( NDATA( 5 ),
$ ONE / DBLE( NCALL ), OPCNT,
$ 1 )
CALL DSCAL( NDATA( 5 ),
$ ONE / DBLE( NCALL ), TIMNG,
$ 1 )
CALL DCOPY( NDATA( 5 ), OPCNT, 1,
$ OPCTBL( 1, ITYPE, NCLSD+INB,
$ 5 ), 1 )
CALL DCOPY( NDATA( 5 ), TIMNG, 1,
$ TIMTBL( 1, ITYPE, NCLSD+INB,
$ 5 ), 1 )
DO 130 I = 1, NDATA( 5 )
FLPTBL( I, ITYPE, NCLSD+INB,
$ 5 ) = DMFLOP( OPCNT( I ),
$ TIMNG( I ), INFO )
130 CONTINUE
*
END IF
*
140 CONTINUE
150 CONTINUE
160 CONTINUE
NCLS = NCLS + NNB
NCLSY = NCLSY + NNB
NCLSS = NCLSS + NNB
NCLSD = NCLSD + NNB
170 CONTINUE
NCLSX = NCLSX + 1
180 CONTINUE
190 CONTINUE
200 CONTINUE
*
* Print a summary of the results.
*
DO 220 ISUB = 1, NSUBS
IF( TIMSUB( ISUB ) ) THEN
WRITE( NOUT, FMT = 9999 )SUBNAM( ISUB )
IF( ISUB.EQ.1 ) THEN
WRITE( NOUT, FMT = 9998 )
ELSE IF( ISUB.EQ.2 ) THEN
WRITE( NOUT, FMT = 9997 )
ELSE IF( ISUB.EQ.3 ) THEN
WRITE( NOUT, FMT = 9996 )
ELSE IF( ISUB.EQ.4 ) THEN
WRITE( NOUT, FMT = 9995 )
ELSE IF( ISUB.EQ.5 ) THEN
WRITE( NOUT, FMT = 9994 )
END IF
DO 210 ITBL = 1, 3
IF( ITBL.EQ.1 ) THEN
WRITE( NOUT, FMT = 9993 )
CALL DPRTLS( ISUB, SUBNAM( ISUB ), NDATA( ISUB ), NM,
$ MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL,
$ NXVAL, NLDA, LDAVAL, MTYPE,
$ TIMTBL( 1, 1, 1, ISUB ), NOUT )
ELSE IF( ITBL.EQ.2 ) THEN
WRITE( NOUT, FMT = 9992 )
CALL DPRTLS( ISUB, SUBNAM( ISUB ), NDATA( ISUB ), NM,
$ MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL,
$ NXVAL, NLDA, LDAVAL, MTYPE,
$ OPCTBL( 1, 1, 1, ISUB ), NOUT )
ELSE IF( ITBL.EQ.3 ) THEN
WRITE( NOUT, FMT = 9991 )
CALL DPRTLS( ISUB, SUBNAM( ISUB ), NDATA( ISUB ), NM,
$ MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL,
$ NXVAL, NLDA, LDAVAL, MTYPE,
$ FLPTBL( 1, 1, 1, ISUB ), NOUT )
END IF
210 CONTINUE
END IF
220 CONTINUE
*
230 CONTINUE
9999 FORMAT( / / / ' ****** Results for ', A, ' ******' )
9998 FORMAT( / ' DGELS : overall performance',
$ / ' comp. 1 : if M>=N, DGEQRF, QR factorization',
$ / ' if M< N, DGELQF, QR factorization',
$ / ' comp. 2 : if M>=N, DORMQR, multiplication by',
$ ' reflectors', /
$ ' if M< N, DORMLQ, multiplication by',
$ ' reflectors', /
$ ' comp. 3 : DTRSM, solution of the triangular', ' system',
$ / / ' Types 4 to 6 are the transpose', ' of types 1 to 3' )
9997 FORMAT( / ' DGELSX : overall performance',
$ / ' comp. 1 : DGEQPF, QR factorization with column',
$ ' pivoting', / ' comp. 2 : if RANK<N, DTZRQF, reduction to',
$ ' triangular form', /
$ ' comp. 3 : DORM2R, multiplication by reflectors',
$ / ' comp. 4 : DTRSM, solution of the triangular', ' system',
$ / ' comp. 5 : if RANK<N, DLATZM, multiplication by',
$ ' reflectors' )
9996 FORMAT( / ' DGELSY : overall performance',
$ / ' comp. 1 : DGEQP3, QR factorization with column',
$ ' pivoting', / ' comp. 2 : if RANK<N, DTZRZF, reduction to',
$ ' triangular form', /
$ ' comp. 3 : DORMQR, multiplication by reflectors',
$ / ' comp. 4 : DTRSM, solution of the triangular', ' system',
$ / ' comp. 5 : if RANK<N, DORMRZ, multiplication by',
$ ' reflectors' )
9995 FORMAT( / ' DGELSS: overall performance',
$ / ' comp. 1 : if M>>N, DGEQRF, QR factorization',
$ / ' DORMQR, multiplication by',
$ ' reflectors', /
$ ' if N>>M, DGELQF, QL factorization',
$ / ' comp. 2 : DGEBRD, reduction to bidiagonal form',
$ / ' comp. 3 : DORMBR, multiplication by left',
$ ' bidiagonalizing vectors', /
$ ' DORGBR, generation of right',
$ ' bidiagonalizing vectors', /
$ ' comp. 4 : DBDSQR, singular value decomposition',
$ ' of the bidiagonal matrix',
$ / ' comp. 5 : multiplication by right bidiagonalizing',
$ ' vectors', /
$ ' (DGEMM or SGEMV, and DORMLQ if N>>M)' )
9994 FORMAT( / ' DGELSD: overall performance',
$ / ' comp. 1 : if M>>N, DGEQRF, QR factorization',
$ / ' DORMQR, multiplication by',
$ ' reflectors', /
$ ' if N>>M, DGELQF, QL factorization',
$ / ' comp. 2 : DGEBRD, reduction to bidiagonal form',
$ / ' comp. 3 : DORMBR, multiplication by left ',
$ ' bidiagonalizing vectors', /
$ ' multiplication by right',
$ ' bidiagonalizing vectors', /
$ ' comp. 4 : DLALSD, singular value decomposition',
$ ' of the bidiagonal matrix' )
9993 FORMAT( / / ' *** Time in seconds *** ' )
9992 FORMAT( / / ' *** Number of floating-point operations *** ' )
9991 FORMAT( / / ' *** Speed in megaflops *** ' )
RETURN
*
* End of DTIMLS
*
END
|