1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
SUBROUTINE DTIMQ3( LINE, NM, MVAL, NVAL, NNB, NBVAL, NXVAL, NLDA,
$ LDAVAL, TIMMIN, A, COPYA, TAU, WORK, IWORK,
$ RESLTS, LDR1, LDR2, NOUT )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* December 22, 1999
*
* Rewritten to time qp3 code.
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER LDR1, LDR2, NLDA, NM, NNB, NOUT
DOUBLE PRECISION TIMMIN
* ..
* .. Array Arguments ..
INTEGER IWORK( * ), LDAVAL( * ), MVAL( * ), NBVAL( * ),
$ NVAL( * ), NXVAL( * )
DOUBLE PRECISION A( * ), COPYA( * ), RESLTS( LDR1, LDR2, * ),
$ TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DTIMQ3 times the routines to perform the Rank-Revealing QR
* factorization of a DOUBLE PRECISION general matrix.
*
* Two matrix types may be used for timing. The number of types is
* set in the parameter NMODE and the matrix types are set in the vector
* MODES, using the following key:
* 2. BREAK1 D(1:N-1)=1 and D(N)=1.0/COND in DLATMS
* 3. GEOM D(I)=COND**(-(I-1)/(N-1)) in DLATMS
* These numbers are chosen to correspond with the matrix types in the
* test code.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* The input line that requested this routine. The first six
* characters contain either the name of a subroutine or a
* generic path name. The remaining characters may be used to
* specify the individual routines to be timed. See ATIMIN for
* a full description of the format of the input line.
*
* NM (input) INTEGER
* The number of values of M and N contained in the vectors
* MVAL and NVAL. The matrix sizes are used in pairs (M,N).
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix row dimension M.
*
* NVAL (input) INTEGER array, dimension (NM)
* The values of the matrix column dimension N.
*
* NNB (input) INTEGER
* The number of values of NB and NX contained in the
* vectors NBVAL and NXVAL. The blocking parameters are used
* in pairs (NB,NX).
*
* NBVAL (input) INTEGER array, dimension (NNB)
* The values of the blocksize NB.
*
* NXVAL (input) INTEGER array, dimension (NNB)
* The values of the crossover point NX.
*
* NLDA (input) INTEGER
* The number of values of LDA contained in the vector LDAVAL.
*
* LDAVAL (input) INTEGER array, dimension (NLDA)
* The values of the leading dimension of the array A.
*
* TIMMIN (input) DOUBLE PRECISION
* The minimum time a subroutine will be timed.
*
* A (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)
* where LDAMAX and NMAX are the maximum values of LDA and N.
*
* COPYA (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)
*
* TAU (workspace) DOUBLE PRECISION array, dimension (MINMN)
*
* WORK (workspace) DOUBLE PRECISION array, dimension (3*NMAX)
*
* IWORK (workspace) INTEGER array, dimension (2*NMAX)
*
* RESLTS (workspace) DOUBLE PRECISION array, dimension
* (LDR1,LDR2,NLDA)
* The timing results for each subroutine over the relevant
* values of MODE, (M,N), and LDA.
*
* LDR1 (input) INTEGER
* The first dimension of RESLTS. LDR1 >= max(1,NM).
*
* LDR2 (input) INTEGER
* The second dimension of RESLTS. LDR2 >= max(1,NM).
*
* NOUT (input) INTEGER
* The unit number for output.
*
* =====================================================================
*
* .. Parameters ..
*
*
INTEGER NSUBS, NMODE
PARAMETER ( NSUBS = 1, NMODE = 2 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
CHARACTER*3 PATH
CHARACTER*6 CNAME
INTEGER I, IC, ICL, ILDA, IM, IMODE, INB, INFO, LDA,
$ LW, M, MINMN, MODE, N, NB, NX
DOUBLE PRECISION COND, DMAX, OPS, S1, S2, TIME, UNTIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER*6 SUBNAM( NSUBS )
INTEGER ISEED( 4 ), MODES( NMODE )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DMFLOP, DOPLA, DSECND
EXTERNAL DLAMCH, DMFLOP, DOPLA, DSECND
* ..
* .. External Subroutines ..
EXTERNAL ATIMCK, ATIMIN, DGEQP3, DLACPY, DLATMS, DPRTB4,
$ ICOPY, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Data statements ..
DATA SUBNAM / 'DGEQP3' /
DATA MODES / 2, 3 /
DATA ISEED / 0, 0, 0, 1 /
* ..
* .. Executable Statements ..
*
* Extract the timing request from the input line.
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'QP'
CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( .NOT.TIMSUB( 1 ) .OR. INFO.NE.0 )
$ GO TO 90
*
* Check that M <= LDA for the input values.
*
CNAME = LINE( 1: 6 )
CALL ATIMCK( 1, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
IF( INFO.GT.0 ) THEN
WRITE( NOUT, FMT = 9996 )CNAME
GO TO 90
END IF
*
* Set the condition number and scaling factor for the matrices
* to be generated.
*
DMAX = ONE
COND = ONE / DLAMCH( 'Precision' )
*
* Do for each type of matrix:
*
DO 80 IMODE = 1, NMODE
MODE = MODES( IMODE )
*
*
* *****************
* * Timing xGEQP3 *
* *****************
*
* Do for each value of LDA:
*
DO 60 ILDA = 1, NLDA
LDA = LDAVAL( ILDA )
*
* Do for each pair of values (M,N):
*
DO 50 IM = 1, NM
M = MVAL( IM )
N = NVAL( IM )
MINMN = MIN( M, N )
*
* Generate a test matrix of size m by n using the
* singular value distribution indicated by MODE.
*
CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', TAU,
$ MODE, COND, DMAX, M, N, 'No packing', COPYA,
$ LDA, WORK, INFO )
*
* Do for each pair of values (NB,NX) in NBVAL and NXVAL:
*
DO 40 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
*
*
* DGEQP3
*
LW = MAX( 1, 2*N+( N+1 )*NB )
DO 10 I = 1, N
IWORK( N+I ) = 0
10 CONTINUE
*
CALL DLACPY( 'All', M, N, COPYA, LDA, A, LDA )
CALL ICOPY( N, IWORK( N+1 ), 1, IWORK, 1 )
IC = 0
S1 = DSECND( )
20 CONTINUE
CALL DGEQP3( M, N, A, LDA, IWORK, TAU, WORK, LW,
$ INFO )
S2 = DSECND( )
*
IF( INFO.NE.0 ) THEN
WRITE( *, FMT = * )'>>>Warning: INFO returned by ',
$ 'DGEQPX is:', INFO
INFO = 0
END IF
*
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL DLACPY( 'All', M, N, COPYA, LDA, A, LDA )
CALL ICOPY( N, IWORK( N+1 ), 1, IWORK, 1 )
GO TO 20
END IF
*
* Subtract the time used in DLACPY.
*
ICL = 1
S1 = DSECND( )
30 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL DLACPY( 'All', M, N, COPYA, LDA, A, LDA )
CALL ICOPY( N, IWORK( N+1 ), 1, IWORK, 1 )
GO TO 30
END IF
*
* The number of flops of xGEQP3 is approximately the
* the number of flops of xGEQPF.
*
TIME = ( TIME-UNTIME ) / DBLE( IC )
*
OPS = DOPLA( 'DGEQPF', M, N, 0, 0, NB )
RESLTS( INB, IM, ILDA ) = DMFLOP( OPS, TIME, INFO )
*
40 CONTINUE
50 CONTINUE
60 CONTINUE
*
* Print the results for each matrix type.
*
WRITE( NOUT, FMT = 9999 )SUBNAM( 1 )
WRITE( NOUT, FMT = 9998 )IMODE
DO 70 I = 1, NLDA
WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
70 CONTINUE
WRITE( NOUT, FMT = * )
CALL DPRTB4( '( NB, NX)', 'M', 'N', NNB, NBVAL, NXVAL, NM,
$ MVAL, NVAL, NLDA, RESLTS( 1, 1, 1 ), LDR1, LDR2,
$ NOUT )
*
80 CONTINUE
*
9999 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
9998 FORMAT( 5X, 'type of matrix:', I4 )
9997 FORMAT( 5X, 'line ', I4, ' with LDA = ', I4 )
9996 FORMAT( 1X, A6, ' timing run not attempted', / )
*
90 CONTINUE
RETURN
*
* End of DTIMQ3
*
END
|