1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
SUBROUTINE STIMMG( IFLAG, M, N, A, LDA, KL, KU )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER IFLAG, KL, KU, LDA, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * )
* ..
*
* Purpose
* =======
*
* STIMMG generates a real test matrix whose type is given by IFLAG.
* All the matrices are Toeplitz (constant along a diagonal), with
* random elements on each diagonal.
*
* Arguments
* =========
*
* IFLAG (input) INTEGER
* The type of matrix to be generated.
* = 0 or 1: General matrix
* = 2 or -2: General banded matrix
* = 3 or -3: Symmetric positive definite matrix
* = 4 or -4: Symmetric positive definite packed
* = 5 or -5: Symmetric positive definite banded
* = 6 or -6: Symmetric indefinite matrix
* = 7 or -7: Symmetric indefinite packed
* = 8 or -8: Symmetric indefinite banded
* = 9 or -9: Triangular
* = 10 or -10: Triangular packed
* = 11 or -11: Triangular banded
* = 12: General tridiagonal
* = 13 or -13: Positive definite tridiagonal
* For symmetric or triangular matrices, IFLAG > 0 indicates
* upper triangular storage and IFLAG < 0 indicates lower
* triangular storage.
*
* M (input) INTEGER
* The number of rows of the matrix to be generated.
*
* N (input) INTEGER
* The number of columns of the matrix to be generated.
*
* A (output) REAL array, dimension (LDA,N)
* The generated matrix.
*
* If the absolute value of IFLAG is 1, 3, or 6, the leading
* M x N (or N x N) subblock is used to store the matrix.
* If the matrix is symmetric, only the upper or lower triangle
* of this block is referenced.
*
* If the absolute value of IFLAG is 4 or 7, the matrix is
* symmetric and packed storage is used for the upper or lower
* triangle. The triangular matrix is stored columnwise as a
* inear array, and the array A is treated as a vector of
* length LDA. LDA must be set to at least N*(N+1)/2.
*
* If the absolute value of IFLAG is 2 or 5, the matrix is
* returned in band format. The columns of the matrix are
* specified in the columns of A and the diagonals of the
* matrix are specified in the rows of A, with the leading
* diagonal in row
* KL + KU + 1, if IFLAG = 2
* KU + 1, if IFLAG = 5 or -2
* 1, if IFLAG = -5
* If IFLAG = 2, the first KL rows are not used to leave room
* for pivoting in SGBTRF.
*
* LDA (input) INTEGER
* The leading dimension of A. If the generated matrix is
* packed, LDA >= N*(N+1)/2, otherwise LDA >= max(1,M).
*
* KL (input) INTEGER
* The number of subdiagonals if IFLAG = 2, 5, or -5.
*
* KU (input) INTEGER
* The number of superdiagonals if IFLAG = 2, 5, or -5.
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J, JJ, JN, K, MJ, MU
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, REAL, SIGN
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLARNV
* ..
* .. Data statements ..
DATA ISEED / 0, 0, 0, 1 /
* ..
* .. Executable Statements ..
*
IF( M.LE.0 .OR. N.LE.0 ) THEN
RETURN
*
ELSE IF( IFLAG.EQ.0 .OR. IFLAG.EQ.1 ) THEN
*
* General matrix
*
* Set first column and row to random values.
*
CALL SLARNV( 2, ISEED, M, A( 1, 1 ) )
DO 10 J = 2, N, M
MJ = MIN( M, N-J+1 )
CALL SLARNV( 2, ISEED, MJ, A( 1, J ) )
IF( MJ.GT.1 )
$ CALL SCOPY( MJ-1, A( 2, J ), 1, A( 1, J+1 ), LDA )
10 CONTINUE
*
* Fill in the rest of the matrix.
*
DO 30 J = 2, N
DO 20 I = 2, M
A( I, J ) = A( I-1, J-1 )
20 CONTINUE
30 CONTINUE
*
ELSE IF( IFLAG.EQ.2 .OR. IFLAG.EQ.-2 ) THEN
*
* General band matrix
*
IF( IFLAG.EQ.2 ) THEN
K = KL + KU + 1
ELSE
K = KU + 1
END IF
CALL SLARNV( 2, ISEED, MIN( M, KL+1 ), A( K, 1 ) )
MU = MIN( N-1, KU )
CALL SLARNV( 2, ISEED, MU+1, A( K-MU, N ) )
DO 40 J = 2, N - 1
MU = MIN( J-1, KU )
CALL SCOPY( MU, A( K-MU, N ), 1, A( K-MU, J ), 1 )
CALL SCOPY( MIN( M-J+1, KL+1 ), A( K, 1 ), 1, A( K, J ), 1 )
40 CONTINUE
*
ELSE IF( IFLAG.EQ.3 ) THEN
*
* Symmetric positive definite, upper triangle
*
CALL SLARNV( 2, ISEED, N-1, A( 1, N ) )
A( N, N ) = REAL( N )
DO 50 J = N - 1, 1, -1
CALL SCOPY( J, A( N-J+1, N ), 1, A( 1, J ), 1 )
50 CONTINUE
*
ELSE IF( IFLAG.EQ.-3 ) THEN
*
* Symmetric positive definite, lower triangle
*
A( 1, 1 ) = REAL( N )
IF( N.GT.1 )
$ CALL SLARNV( 2, ISEED, N-1, A( 2, 1 ) )
DO 60 J = 2, N
CALL SCOPY( N-J+1, A( 1, 1 ), 1, A( J, J ), 1 )
60 CONTINUE
*
ELSE IF( IFLAG.EQ.4 ) THEN
*
* Symmetric positive definite packed, upper triangle
*
JN = ( N-1 )*N / 2 + 1
CALL SLARNV( 2, ISEED, N-1, A( JN, 1 ) )
A( JN+N-1, 1 ) = REAL( N )
JJ = JN
DO 70 J = N - 1, 1, -1
JJ = JJ - J
JN = JN + 1
CALL SCOPY( J, A( JN, 1 ), 1, A( JJ, 1 ), 1 )
70 CONTINUE
*
ELSE IF( IFLAG.EQ.-4 ) THEN
*
* Symmetric positive definite packed, lower triangle
*
A( 1, 1 ) = REAL( N )
IF( N.GT.1 )
$ CALL SLARNV( 2, ISEED, N-1, A( 2, 1 ) )
JJ = N + 1
DO 80 J = 2, N
CALL SCOPY( N-J+1, A( 1, 1 ), 1, A( JJ, 1 ), 1 )
JJ = JJ + N - J + 1
80 CONTINUE
*
ELSE IF( IFLAG.EQ.5 ) THEN
*
* Symmetric positive definite banded, upper triangle
*
K = KL
MU = MIN( N-1, K )
CALL SLARNV( 2, ISEED, MU, A( K+1-MU, N ) )
A( K+1, N ) = REAL( N )
DO 90 J = N - 1, 1, -1
MU = MIN( J, K+1 )
CALL SCOPY( MU, A( K+2-MU, N ), 1, A( K+2-MU, J ), 1 )
90 CONTINUE
*
ELSE IF( IFLAG.EQ.-5 ) THEN
*
* Symmetric positive definite banded, lower triangle
*
K = KL
A( 1, 1 ) = REAL( N )
CALL SLARNV( 2, ISEED, MIN( N-1, K ), A( 2, 1 ) )
DO 100 J = 2, N
CALL SCOPY( MIN( N-J+1, K+1 ), A( 1, 1 ), 1, A( 1, J ), 1 )
100 CONTINUE
*
ELSE IF( IFLAG.EQ.6 ) THEN
*
* Symmetric indefinite, upper triangle
*
CALL SLARNV( 2, ISEED, N, A( 1, N ) )
DO 110 J = N - 1, 1, -1
CALL SCOPY( J, A( N-J+1, N ), 1, A( 1, J ), 1 )
110 CONTINUE
*
ELSE IF( IFLAG.EQ.-6 ) THEN
*
* Symmetric indefinite, lower triangle
*
CALL SLARNV( 2, ISEED, N, A( 1, 1 ) )
DO 120 J = 2, N
CALL SCOPY( N-J+1, A( 1, 1 ), 1, A( J, J ), 1 )
120 CONTINUE
*
ELSE IF( IFLAG.EQ.7 ) THEN
*
* Symmetric indefinite packed, upper triangle
*
JN = ( N-1 )*N / 2 + 1
CALL SLARNV( 2, ISEED, N, A( JN, 1 ) )
JJ = JN
DO 130 J = N - 1, 1, -1
JJ = JJ - J
JN = JN + 1
CALL SCOPY( J, A( JN, 1 ), 1, A( JJ, 1 ), 1 )
130 CONTINUE
*
ELSE IF( IFLAG.EQ.-7 ) THEN
*
* Symmetric indefinite packed, lower triangle
*
CALL SLARNV( 2, ISEED, N, A( 1, 1 ) )
JJ = N + 1
DO 140 J = 2, N
CALL SCOPY( N-J+1, A( 1, 1 ), 1, A( JJ, 1 ), 1 )
JJ = JJ + N - J + 1
140 CONTINUE
*
ELSE IF( IFLAG.EQ.8 ) THEN
*
* Symmetric indefinite banded, upper triangle
*
K = KL
MU = MIN( N, K+1 )
CALL SLARNV( 2, ISEED, MU, A( K+2-MU, N ) )
DO 150 J = N - 1, 1, -1
MU = MIN( J, K+1 )
CALL SCOPY( MU, A( K+2-MU, N ), 1, A( K+2-MU, J ), 1 )
150 CONTINUE
*
ELSE IF( IFLAG.EQ.-8 ) THEN
*
* Symmetric indefinite banded, lower triangle
*
K = KL
CALL SLARNV( 2, ISEED, MIN( N, K+1 ), A( 1, 1 ) )
DO 160 J = 2, N
CALL SCOPY( MIN( N-J+1, K+1 ), A( 1, 1 ), 1, A( 1, J ), 1 )
160 CONTINUE
*
ELSE IF( IFLAG.EQ.9 ) THEN
*
* Upper triangular
*
CALL SLARNV( 2, ISEED, N, A( 1, N ) )
A( N, N ) = SIGN( REAL( N ), A( N, N ) )
DO 170 J = N - 1, 1, -1
CALL SCOPY( J, A( N-J+1, N ), 1, A( 1, J ), 1 )
170 CONTINUE
*
ELSE IF( IFLAG.EQ.-9 ) THEN
*
* Lower triangular
*
CALL SLARNV( 2, ISEED, N, A( 1, 1 ) )
A( 1, 1 ) = SIGN( REAL( N ), A( 1, 1 ) )
DO 180 J = 2, N
CALL SCOPY( N-J+1, A( 1, 1 ), 1, A( J, J ), 1 )
180 CONTINUE
*
ELSE IF( IFLAG.EQ.10 ) THEN
*
* Upper triangular packed
*
JN = ( N-1 )*N / 2 + 1
CALL SLARNV( 2, ISEED, N, A( JN, 1 ) )
A( JN+N-1, 1 ) = SIGN( REAL( N ), A( JN+N-1, 1 ) )
JJ = JN
DO 190 J = N - 1, 1, -1
JJ = JJ - J
JN = JN + 1
CALL SCOPY( J, A( JN, 1 ), 1, A( JJ, 1 ), 1 )
190 CONTINUE
*
ELSE IF( IFLAG.EQ.-10 ) THEN
*
* Lower triangular packed
*
CALL SLARNV( 2, ISEED, N, A( 1, 1 ) )
A( 1, 1 ) = SIGN( REAL( N ), A( 1, 1 ) )
JJ = N + 1
DO 200 J = 2, N
CALL SCOPY( N-J+1, A( 1, 1 ), 1, A( JJ, 1 ), 1 )
JJ = JJ + N - J + 1
200 CONTINUE
*
ELSE IF( IFLAG.EQ.11 ) THEN
*
* Upper triangular banded
*
K = KL
MU = MIN( N, K+1 )
CALL SLARNV( 2, ISEED, MU, A( K+2-MU, N ) )
A( K+1, N ) = SIGN( REAL( K+1 ), A( K+1, N ) )
DO 210 J = N - 1, 1, -1
MU = MIN( J, K+1 )
CALL SCOPY( MU, A( K+2-MU, N ), 1, A( K+2-MU, J ), 1 )
210 CONTINUE
*
ELSE IF( IFLAG.EQ.-11 ) THEN
*
* Lower triangular banded
*
K = KL
CALL SLARNV( 2, ISEED, MIN( N, K+1 ), A( 1, 1 ) )
A( 1, 1 ) = SIGN( REAL( K+1 ), A( 1, 1 ) )
DO 220 J = 2, N
CALL SCOPY( MIN( N-J+1, K+1 ), A( 1, 1 ), 1, A( 1, J ), 1 )
220 CONTINUE
*
ELSE IF( IFLAG.EQ.12 ) THEN
*
* General tridiagonal
*
CALL SLARNV( 2, ISEED, 3*N-2, A )
*
ELSE IF( IFLAG.EQ.13 .OR. IFLAG.EQ.-13 ) THEN
*
* Positive definite tridiagonal
*
DO 230 J = 1, N
A( J, 1 ) = 2.0
230 CONTINUE
CALL SLARNV( 2, ISEED, N-1, A( N+1, 1 ) )
END IF
*
RETURN
*
* End of STIMMG
*
END
|