File: stimtd.f

package info (click to toggle)
libflame 5.2.0-5.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 162,092 kB
  • sloc: ansic: 750,080; fortran: 404,344; makefile: 8,136; sh: 5,458; python: 937; pascal: 144; perl: 66
file content (501 lines) | stat: -rw-r--r-- 17,817 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
      SUBROUTINE STIMTD( LINE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
     $                   NLDA, LDAVAL, TIMMIN, A, B, D, TAU, WORK,
     $                   RESLTS, LDR1, LDR2, LDR3, NOUT )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            LDR1, LDR2, LDR3, NLDA, NM, NN, NNB, NOUT
      REAL               TIMMIN
*     ..
*     .. Array Arguments ..
      INTEGER            LDAVAL( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
     $                   NXVAL( * )
      REAL               A( * ), B( * ), D( * ),
     $                   RESLTS( LDR1, LDR2, LDR3, * ), TAU( * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  STIMTD times the LAPACK routines SSYTRD, SORGTR, and SORMTR and the
*  EISPACK routine TRED1.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          The input line that requested this routine.  The first six
*          characters contain either the name of a subroutine or a
*          generic path name.  The remaining characters may be used to
*          specify the individual routines to be timed.  See ATIMIN for
*          a full description of the format of the input line.
*
*  NM      (input) INTEGER
*          The number of values of M contained in the vector MVAL.
*
*  MVAL    (input) INTEGER array, dimension (NM)
*          The values of the matrix size M.
*
*  NN      (input) INTEGER
*          The number of values of N contained in the vector NVAL.
*
*  NVAL    (input) INTEGER array, dimension (NN)
*          The values of the matrix column dimension N.
*
*  NNB     (input) INTEGER
*          The number of values of NB and NX contained in the
*          vectors NBVAL and NXVAL.  The blocking parameters are used
*          in pairs (NB,NX).
*
*  NBVAL   (input) INTEGER array, dimension (NNB)
*          The values of the blocksize NB.
*
*  NXVAL   (input) INTEGER array, dimension (NNB)
*          The values of the crossover point NX.
*
*  NLDA    (input) INTEGER
*          The number of values of LDA contained in the vector LDAVAL.
*
*  LDAVAL  (input) INTEGER array, dimension (NLDA)
*          The values of the leading dimension of the array A.
*
*  TIMMIN  (input) REAL
*          The minimum time a subroutine will be timed.
*
*  A       (workspace) REAL array, dimension (LDAMAX*NMAX)
*          where LDAMAX and NMAX are the maximum values of LDA and N.
*
*  B       (workspace) REAL array, dimension (LDAMAX*NMAX)
*
*  D       (workspace) REAL array, dimension (2*NMAX-1)
*
*  TAU     (workspace) REAL array, dimension (NMAX)
*
*  WORK    (workspace) REAL array, dimension (NMAX*NBMAX)
*          where NBMAX is the maximum value of NB.
*
*  RESLTS  (workspace) REAL array, dimension
*                      (LDR1,LDR2,LDR3,4*NN+3)
*          The timing results for each subroutine over the relevant
*          values of M, (NB,NX), LDA, and N.
*
*  LDR1    (input) INTEGER
*          The first dimension of RESLTS.  LDR1 >= max(1,NNB).
*
*  LDR2    (input) INTEGER
*          The second dimension of RESLTS.  LDR2 >= max(1,NM).
*
*  LDR3    (input) INTEGER
*          The third dimension of RESLTS.  LDR3 >= max(1,2*NLDA).
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  Internal Parameters
*  ===================
*
*  MODE    INTEGER
*          The matrix type.  MODE = 3 is a geometric distribution of
*          eigenvalues.  See SLATMS for further details.
*
*  COND    REAL
*          The condition number of the matrix.  The singular values are
*          set to values from DMAX to DMAX/COND.
*
*  DMAX    REAL
*          The magnitude of the largest singular value.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NSUBS
      PARAMETER          ( NSUBS = 4 )
      INTEGER            MODE
      REAL               COND, DMAX
      PARAMETER          ( MODE = 3, COND = 100.0E0, DMAX = 1.0E0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          LAB1, LAB2, SIDE, TRANS, UPLO
      CHARACTER*3        PATH
      CHARACTER*6        CNAME
      INTEGER            I, I3, I4, IC, ICL, ILDA, IM, IN, INB, INFO,
     $                   ISIDE, ISUB, ITOFF, ITRAN, IUPLO, LDA, LW, M,
     $                   M1, N, N1, NB, NX
      REAL               OPS, S1, S2, TIME, UNTIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER          SIDES( 2 ), TRANSS( 2 ), UPLOS( 2 )
      CHARACTER*6        SUBNAM( NSUBS )
      INTEGER            ISEED( 4 ), RESEED( 4 )
*     ..
*     .. External Functions ..
      REAL               SECOND, SMFLOP, SOPLA
      EXTERNAL           SECOND, SMFLOP, SOPLA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMCK, ATIMIN, ICOPY, SLACPY, SLATMS, SORGTR,
     $                   SORMTR, SPRTB3, SPRTBL, SSYTRD, STIMMG, TRED1,
     $                   XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, REAL
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'SSYTRD', 'TRED1', 'SORGTR',
     $                   'SORMTR' /
      DATA               SIDES / 'L', 'R' / , TRANSS / 'N', 'T' / ,
     $                   UPLOS / 'U', 'L' /
      DATA               ISEED / 0, 0, 0, 1 /
*     ..
*     .. Executable Statements ..
*
*     Extract the timing request from the input line.
*
      PATH( 1: 1 ) = 'Single precision'
      PATH( 2: 3 ) = 'TD'
      CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
      IF( INFO.NE.0 )
     $   GO TO 240
*
*     Check that M <= LDA for the input values.
*
      CNAME = LINE( 1: 6 )
      CALL ATIMCK( 2, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
      IF( INFO.GT.0 ) THEN
         WRITE( NOUT, FMT = 9999 )CNAME
         GO TO 240
      END IF
*
*     Check that K <= LDA for SORMTR
*
      IF( TIMSUB( 4 ) ) THEN
         CALL ATIMCK( 3, CNAME, NN, NVAL, NLDA, LDAVAL, NOUT, INFO )
         IF( INFO.GT.0 ) THEN
            WRITE( NOUT, FMT = 9999 )SUBNAM( 4 )
            TIMSUB( 4 ) = .FALSE.
         END IF
      END IF
*
*     Do first for UPLO = 'U', then for UPLO = 'L'
*
      DO 150 IUPLO = 1, 2
         UPLO = UPLOS( IUPLO )
*
*        Do for each value of M:
*
         DO 140 IM = 1, NM
            M = MVAL( IM )
            CALL ICOPY( 4, ISEED, 1, RESEED, 1 )
*
*           Do for each value of LDA:
*
            DO 130 ILDA = 1, NLDA
               LDA = LDAVAL( ILDA )
               I3 = ( IUPLO-1 )*NLDA + ILDA
*
*              Do for each pair of values (NB, NX) in NBVAL and NXVAL.
*
               DO 120 INB = 1, NNB
                  NB = NBVAL( INB )
                  CALL XLAENV( 1, NB )
                  NX = NXVAL( INB )
                  CALL XLAENV( 3, NX )
                  LW = MAX( 1, M*MAX( 1, NB ) )
*
*                 Generate a test matrix of order M.
*
                  CALL ICOPY( 4, RESEED, 1, ISEED, 1 )
                  CALL SLATMS( M, M, 'Uniform', ISEED, 'Symmetric', TAU,
     $                         MODE, COND, DMAX, M, M, 'No packing', B,
     $                         LDA, WORK, INFO )
*
                  IF( TIMSUB( 2 ) .AND. INB.EQ.1 .AND. IUPLO.EQ.2 ) THEN
*
*                    TRED1:  Eispack reduction using orthogonal
*                    transformations.
*
                     CALL SLACPY( UPLO, M, M, B, LDA, A, LDA )
                     IC = 0
                     S1 = SECOND( )
   10                CONTINUE
                     CALL TRED1( LDA, M, A, D, D( M+1 ), D( M+1 ) )
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN ) THEN
                        CALL SLACPY( UPLO, M, M, B, LDA, A, LDA )
                        GO TO 10
                     END IF
*
*                    Subtract the time used in SLACPY.
*
                     ICL = 1
                     S1 = SECOND( )
   20                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
                     ICL = ICL + 1
                     IF( ICL.LE.IC ) THEN
                        CALL SLACPY( UPLO, M, M, B, LDA, A, LDA )
                        GO TO 20
                     END IF
*
                     TIME = ( TIME-UNTIME ) / REAL( IC )
                     OPS = SOPLA( 'SSYTRD', M, M, -1, -1, NB )
                     RESLTS( INB, IM, ILDA, 2 ) = SMFLOP( OPS, TIME,
     $                  INFO )
                  END IF
*
                  IF( TIMSUB( 1 ) ) THEN
*
*                    SSYTRD:  Reduction to tridiagonal form
*
                     CALL SLACPY( UPLO, M, M, B, LDA, A, LDA )
                     IC = 0
                     S1 = SECOND( )
   30                CONTINUE
                     CALL SSYTRD( UPLO, M, A, LDA, D, D( M+1 ), TAU,
     $                            WORK, LW, INFO )
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN ) THEN
                        CALL SLACPY( UPLO, M, M, B, LDA, A, LDA )
                        GO TO 30
                     END IF
*
*                    Subtract the time used in SLACPY.
*
                     ICL = 1
                     S1 = SECOND( )
   40                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
                     ICL = ICL + 1
                     IF( ICL.LE.IC ) THEN
                        CALL SLACPY( UPLO, M, M, A, LDA, B, LDA )
                        GO TO 40
                     END IF
*
                     TIME = ( TIME-UNTIME ) / REAL( IC )
                     OPS = SOPLA( 'SSYTRD', M, M, -1, -1, NB )
                     RESLTS( INB, IM, I3, 1 ) = SMFLOP( OPS, TIME,
     $                  INFO )
                  ELSE
*
*                    If SSYTRD was not timed, generate a matrix and
*                    factor it using SSYTRD anyway so that the factored
*                    form of the matrix can be used in timing the other
*                    routines.
*
                     CALL SLACPY( UPLO, M, M, B, LDA, A, LDA )
                     CALL SSYTRD( UPLO, M, A, LDA, D, D( M+1 ), TAU,
     $                            WORK, LW, INFO )
                  END IF
*
                  IF( TIMSUB( 3 ) ) THEN
*
*                    SORGTR:  Generate the orthogonal matrix Q from the
*                    reduction to Hessenberg form A = Q*H*Q'
*
                     CALL SLACPY( UPLO, M, M, A, LDA, B, LDA )
                     IC = 0
                     S1 = SECOND( )
   50                CONTINUE
                     CALL SORGTR( UPLO, M, B, LDA, TAU, WORK, LW, INFO )
                     S2 = SECOND( )
                     TIME = S2 - S1
                     IC = IC + 1
                     IF( TIME.LT.TIMMIN ) THEN
                        CALL SLACPY( UPLO, M, M, A, LDA, B, LDA )
                        GO TO 50
                     END IF
*
*                    Subtract the time used in SLACPY.
*
                     ICL = 1
                     S1 = SECOND( )
   60                CONTINUE
                     S2 = SECOND( )
                     UNTIME = S2 - S1
                     ICL = ICL + 1
                     IF( ICL.LE.IC ) THEN
                        CALL SLACPY( UPLO, M, M, A, LDA, B, LDA )
                        GO TO 60
                     END IF
*
                     TIME = ( TIME-UNTIME ) / REAL( IC )
*
*                    Op count for SORGTR:  same as
*                       SORGQR( N-1, N-1, N-1, ... )
*
                     OPS = SOPLA( 'SORGQR', M-1, M-1, M-1, -1, NB )
                     RESLTS( INB, IM, I3, 3 ) = SMFLOP( OPS, TIME,
     $                  INFO )
                  END IF
*
                  IF( TIMSUB( 4 ) ) THEN
*
*                    SORMTR:  Multiply by Q stored as a product of
*                    elementary transformations
*
                     I4 = 3
                     DO 110 ISIDE = 1, 2
                        SIDE = SIDES( ISIDE )
                        DO 100 IN = 1, NN
                           N = NVAL( IN )
                           LW = MAX( 1, MAX( 1, NB )*N )
                           IF( ISIDE.EQ.1 ) THEN
                              M1 = M
                              N1 = N
                           ELSE
                              M1 = N
                              N1 = M
                           END IF
                           ITOFF = 0
                           DO 90 ITRAN = 1, 2
                              TRANS = TRANSS( ITRAN )
                              CALL STIMMG( 0, M1, N1, B, LDA, 0, 0 )
                              IC = 0
                              S1 = SECOND( )
   70                         CONTINUE
                              CALL SORMTR( SIDE, UPLO, TRANS, M1, N1, A,
     $                                     LDA, TAU, B, LDA, WORK, LW,
     $                                     INFO )
                              S2 = SECOND( )
                              TIME = S2 - S1
                              IC = IC + 1
                              IF( TIME.LT.TIMMIN ) THEN
                                 CALL STIMMG( 0, M1, N1, B, LDA, 0, 0 )
                                 GO TO 70
                              END IF
*
*                             Subtract the time used in STIMMG.
*
                              ICL = 1
                              S1 = SECOND( )
   80                         CONTINUE
                              S2 = SECOND( )
                              UNTIME = S2 - S1
                              ICL = ICL + 1
                              IF( ICL.LE.IC ) THEN
                                 CALL STIMMG( 0, M1, N1, B, LDA, 0, 0 )
                                 GO TO 80
                              END IF
*
                              TIME = ( TIME-UNTIME ) / REAL( IC )
*
*                             Op count for SORMTR, SIDE='L':  same as
*                                SORMQR( 'L', TRANS, M-1, N, M-1, ...)
*
*                             Op count for SORMTR, SIDE='R':  same as
*                                SORMQR( 'R', TRANS, M, N-1, N-1, ...)
*
                              IF( ISIDE.EQ.1 ) THEN
                                 OPS = SOPLA( 'SORMQR', M1-1, N1, M1-1,
     $                                 -1, NB )
                              ELSE
                                 OPS = SOPLA( 'SORMQR', M1, N1-1, N1-1,
     $                                 1, NB )
                              END IF
*
                              RESLTS( INB, IM, I3,
     $                           I4+ITOFF+IN ) = SMFLOP( OPS, TIME,
     $                           INFO )
                              ITOFF = NN
   90                      CONTINUE
  100                   CONTINUE
                        I4 = I4 + 2*NN
  110                CONTINUE
                  END IF
*
  120          CONTINUE
  130       CONTINUE
  140    CONTINUE
  150 CONTINUE
*
*     Print tables of results for SSYTRD, TRED1, and SORGTR
*
      DO 180 ISUB = 1, NSUBS - 1
         IF( .NOT.TIMSUB( ISUB ) )
     $      GO TO 180
         WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
         IF( NLDA.GT.1 ) THEN
            DO 160 I = 1, NLDA
               WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
  160       CONTINUE
         END IF
         IF( ISUB.EQ.2 ) THEN
            WRITE( NOUT, FMT = * )
            CALL SPRTB3( ' ', 'N', 1, NBVAL, NXVAL, NM, MVAL, NLDA,
     $                   RESLTS( 1, 1, 1, ISUB ), LDR1, LDR2, NOUT )
         ELSE
            I3 = 1
            DO 170 IUPLO = 1, 2
               WRITE( NOUT, FMT = 9996 )SUBNAM( ISUB ), UPLOS( IUPLO )
               CALL SPRTB3( '(  NB,  NX)', 'N', NNB, NBVAL, NXVAL, NM,
     $                      MVAL, NLDA, RESLTS( 1, 1, I3, ISUB ), LDR1,
     $                      LDR2, NOUT )
               I3 = I3 + NLDA
  170       CONTINUE
         END IF
  180 CONTINUE
*
*     Print tables of results for SORMTR
*
      ISUB = 4
      IF( TIMSUB( ISUB ) ) THEN
         I4 = 3
         DO 230 ISIDE = 1, 2
            IF( ISIDE.EQ.1 ) THEN
               LAB1 = 'M'
               LAB2 = 'N'
               IF( NLDA.GT.1 ) THEN
                  WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
                  DO 190 I = 1, NLDA
                     WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
  190             CONTINUE
               END IF
            ELSE
               LAB1 = 'N'
               LAB2 = 'M'
            END IF
            DO 220 ITRAN = 1, 2
               DO 210 IN = 1, NN
                  I3 = 1
                  DO 200 IUPLO = 1, 2
                     WRITE( NOUT, FMT = 9995 )SUBNAM( ISUB ),
     $                  SIDES( ISIDE ), UPLOS( IUPLO ), TRANSS( ITRAN ),
     $                  LAB2, NVAL( IN )
                     CALL SPRTBL( 'NB', LAB1, NNB, NBVAL, NM, MVAL,
     $                            NLDA, RESLTS( 1, 1, I3, I4+IN ), LDR1,
     $                            LDR2, NOUT )
                     I3 = I3 + NLDA
  200             CONTINUE
  210          CONTINUE
               I4 = I4 + NN
  220       CONTINUE
  230    CONTINUE
      END IF
  240 CONTINUE
*
*     Print a table of results for each timed routine.
*
 9999 FORMAT( 1X, A6, ' timing run not attempted', / )
 9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops *** ' )
 9997 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
 9996 FORMAT( / 5X, A6, ' with UPLO = ''', A1, '''', / )
 9995 FORMAT( / 5X, A6, ' with SIDE = ''', A1, ''', UPLO = ''', A1,
     $      ''', TRANS = ''', A1, ''', ', A1, ' =', I6, / )
      RETURN
*
*     End of STIMTD
*
      END