File: runff.cpp

package info (click to toggle)
libformfactor 0.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,288 kB
  • sloc: cpp: 17,289; python: 382; makefile: 15
file content (403 lines) | stat: -rw-r--r-- 13,860 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Form factor computation: test program
// JWu 2016

// Reference:
//   Joachim Wuttke
//   "Form factor (Fourier shape transform) of polygon and polyhedron."

// To use these tests, FormFactorPolyhedron.cpp must be compiled
// with flag -D POLYHEDRAL_DIAGNOSTIC=ON

#include <cassert>
#include <iostream>
#include <iomanip>
#include <complex>
#include <vector>

#include "ParticleShapes.h"
#include "FormFactorTriangle.h"

using std::cout;
using std::cerr;
using std::vector;

static complex_t I(0.,1.);
static double eps(2e-16);

Diagnosis diagnosis;

int nshape = 13;

extern int n_limit;
extern double q_limit_series;
extern double qpa_limit_series;

//! Returns a pointer to a particle, according to given code

IFormFactorBorn* make_particle( int ishape )
{
    if       ( ishape==1 ) {
        return new FormFactorDodecahedron(3.);
    } else if( ishape==2 ) {
        return new FormFactorIcosahedron(15.);
    } else if( ishape==3 ) { // true tetrahedron
        double alpha = 72 * Units::degree;
        return new FormFactorTetrahedron(1., tan(alpha)/2/sqrt(3), alpha);
    } else if( ishape==4 ) { // tetrahedral frustum
        double alpha = 72 * Units::degree;
        return new FormFactorTetrahedron(1., 0.5*tan(alpha)/2/sqrt(3), alpha);
    } else if( ishape==5 ) { // tetrahedral frustum, flat one
        double alpha = 80 * Units::degree;
        return new FormFactorTetrahedron(1., 0.1*tan(alpha)/2/sqrt(3), alpha);
    } else if( ishape==6 ) { // tetrahedral frustum as in BasicTest
        return new FormFactorTetrahedron(16., 4., .8);
    } else if( ishape==7 ) {
        double alpha = 72 * Units::degree;
        return new FormFactorCone6(10., 10., alpha);
    } else if( ishape==8 ) {
        return new FormFactorPyramid(1.5, .24, 1.);
    } else if( ishape==9 ) {
        return new FormFactorAnisoPyramid(2, .4, .24, 1.);
    } else if( ishape==10) {
        return new FormFactorPrism3(1.2, 1.);
    } else if( ishape==11) {
        return new FormFactorPrism6(1., 1.);
    } else if( ishape==12) {
        return new FormFactorTruncatedCube(4., 1.);
    } else if( ishape==13 ) {
        double alpha = 73 * Units::degree;
        return new FormFactorCuboctahedron(1., 1., .8, alpha);
    } else if( ishape==90 ) {
        return new FormFactorTriangle(1.);
    } else
        throw "Shape not implemented";
}

//! Print q in a form that can be easily pasted to the command line for further investigation

std::string nice_q( cvector_t q )
{
    std::ostringstream ret;
    double qmax = 0;
    ret << std::setprecision(16);
    for( int i=0; i<3; ++i )
        qmax = std::max( qmax, q[i].real() );
    for( int i=0; i<3; ++i )
        ret << q[i].real()/qmax << " " << q[i].imag()/qmax << " ";
    ret << qmax;
    return ret.str();
}

//! Bisect between two q's to find possible discontinuities

void bisect(
    const IFormFactorBorn* polyh, int ishape, double q0mag,
    cvector_t qi, complex_t ri, const Diagnosis di,
    cvector_t qf, complex_t rf, const Diagnosis df,
    double& maxrelstep )
{
    assert( di!=df );
    if( (qi-qf).mag()<4*eps*q0mag ) {
        // narrowed down to minimal step, now check for continuity
        double aval = (std::abs(ri) + std::abs(rf))/2;
        double step = std::abs(ri-rf);
        double relstep = step/aval;
        if( relstep>maxrelstep){
            cout<<"ishape="<<ishape<<": relstep "<<std::setprecision(8)<<relstep<<"="<<step<<"/"<<std::setprecision(16)<<aval<<" for "<<di<<"->"<<df<<" at q between "<<nice_q(qi)<<" and "<<nice_q(qf)<<"\n";
            maxrelstep = relstep;
        }
        return;
    }
    cvector_t q2 = (qi + qf)/2.;
    complex_t r2 = polyh->evaluate_for_q(q2);
    Diagnosis d2 = diagnosis;
    if( d2!=di )
        bisect( polyh, ishape, q0mag, qi, ri, di, q2, r2, d2, maxrelstep );
    if( d2!=df )
        bisect( polyh, ishape, q0mag, q2, r2, d2, qf, rf, df, maxrelstep );
}

//! Computes form factor, and prints result according to outfilter.

void run( const IFormFactorBorn* polyh, int ishape, cvector_t q, int outfilter )
{
    complex_t ret = polyh->evaluate_for_q(q);
    cout<<std::scientific<<std::setprecision(16)<<std::setfill('0');
    if     ( outfilter==0 )
        cout<<q.mag()<<" "<<std::abs(ret)<<" "<<ret.real()<<" "<<ret.imag()<<" "<<
            diagnosis.nExpandedFaces<<std::noshowpos<<" "<<diagnosis.maxOrder;
    else if( outfilter==1 )
        cout<<ret.real();
    else if( outfilter==2 )
        cout<<ret.imag();
    cout<<"\n";
}

//! Compute a form factor with modified control parameter settings

complex_t ff_modified( cvector_t q, const IFormFactorBorn* polyh, bool expand_qpa, bool expand_q )
{
    PolyhedralFace::setLimits( expand_qpa ? 1e99 : 1e-99, 80 );
    FormFactorPolyhedron::setLimits( expand_q ? 1e99 : 1e-99, 80 );
    return polyh->evaluate_for_q( q );
}

void test_matching( int ishape, const vector<vector<cvector_t>>& scans )
{
    cout<<ishape<<"\n";
    cerr<<"shape "<<ishape<<" ...\n";
    IFormFactorBorn* polyh( make_particle( ishape ) );
    int n_mag = 25;
    double mag_i = 1e-3;
    double mag_f = 1e1;
    for( int i=1; i<n_mag; ++i ) {
        double mag = mag_i*pow(mag_f/mag_i,i/(n_mag-1.));
        double res = 0;
        for( const vector<cvector_t>& q_scan: scans ) {
            assert( q_scan.size()== 1 );
            cvector_t uq = q_scan[0];
            const cvector_t q = mag * uq;
            complex_t ff[2];

            ff[0] = ff_modified( q, polyh, false, false );
            ff[1] = ff_modified( q, polyh, true, false );

            double dev = std::abs(ff[0]-ff[1])*2/(std::abs(ff[0])+std::abs(ff[1]));
            res = std::max(res, dev );
            if( 0 && dev>.1 )
                cerr<<ishape<<" "<<mag<<" "<<std::setprecision(16)<<
                    dev<<" "<<ff[0]<<" "<<ff[1]<<" @ "<<q<<"\n";
        }
        cout<<" "<<mag*polyh->getRadius()<<" "<<std::setprecision(8)<<res<<"\n";
    }
    cout<<"\n";
}

double test_continuity( int ishape, const vector<vector<cvector_t>>& scans )
{
    IFormFactorBorn* polyh( make_particle( ishape ) );
    double maxrelstep = 0;
    for( size_t j=0; j<scans.size(); ++j ) {
        if( !(j%100) )
            fprintf( stderr, "%2i: %8li/%li\r", ishape, j, scans.size() );
        const vector<cvector_t>& q_scan = scans[j];
        for( size_t i=1; i<q_scan.size(); ++i ) {
            complex_t last_ret = polyh->evaluate_for_q(q_scan[i-1]);
            Diagnosis last_diag = diagnosis;
            complex_t ret = polyh->evaluate_for_q(q_scan[i]);
            Diagnosis diag = diagnosis;
            if( diag!=last_diag )
                bisect( polyh, ishape, q_scan[i].mag(),
                        q_scan[i-1], last_ret, last_diag,
                        q_scan[i], ret, diag,
                        maxrelstep );
        }
    }
    fprintf( stderr, "\n" );
    cout<<"shape "<<ishape<<" => max rel step = "<<maxrelstep<<"\n";
    return maxrelstep;
}

void loop_one_shape( int ishape, const vector<vector<cvector_t>>& scans )
{
    IFormFactorBorn* polyh( make_particle( ishape ) );
    for( size_t j=0; j<scans.size(); ++j ) {
        if( !(j%100) )
            fprintf( stderr, "%2i: %8li/%li\r", ishape, j, scans.size() );
        const vector<cvector_t>& q_scan = scans[j];
        for( const cvector_t q: q_scan ) {
            complex_t ret = polyh->evaluate_for_q(q);
            cout <<
                ishape<<" " <<
                std::setprecision(16) <<
                q[0].real()<<" "<<q[0].imag()<<" " <<
                q[1].real()<<" "<<q[1].imag()<<" " <<
                q[2].real()<<" "<<q[2].imag()<<" " <<
                std::setprecision(17) <<
                q.mag()<<" " <<
                ret.real()<<" "<<ret.imag()<<" "<<std::abs(ret)<<" " <<
                diagnosis.nExpandedFaces<<" "<<diagnosis.maxOrder<<"\n";
        }
    }
}

vector<vector<cvector_t>> create_scans( int mode )
{
    static int n_dir = 7;
    cvector_t dir[n_dir] = {
        { 1., 0., 0. },
        { 0., 1., 0. },
        { 0., 0., 1. },

        { 0., 1., 1. },
        { 1., 0., 1. },
        { 1., 1., 0. },

        { 1., 1., 1. }
    };

    static int n_absdir = 8; // absorption component
    cvector_t absdir[n_absdir] = {
        { 0., 0., 0. },
        { 1e-15*I, 0., 0. },
        { 0., 1e-10*I, 0. },
        { 0., 0., 1e-5*I },
        { .1*I, 0., 0. },
        { 0., .1*I, 0. },
        { 0., 0., .1*I },
        { .1*I, .1*I, .1*I }
    };

    vector<double> mag;
    if ( mode==0 ) {
        mag.resize(1);
        mag[0] = 1;
    } else if ( mode==1 ) {
        mag = vector<double>( { 0, 1e-12, 1e-10, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3,
                    .01, .06, .2, .5, 1, 2, 5, 10, 20, 50, 100 } );
    } else if (mode==2 ) {
        mag.resize(1001);
        mag[0] = 0.;
        for( size_t i=1; i<mag.size(); ++i )
            mag[i] = 1e-10*pow(1e13,(i-1.)/(mag.size()-2));
    }

    static const int n_difmag = 17;
    static double difmag[n_difmag] =
        { 0., 3e-16, 1e-15, 3e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-9, 1e-7,
          1e-5, 1e-3, .01, .03, .1, .2, .3 };

    vector<vector<cvector_t>> scans;
    for( int i=0; i<n_dir; ++i ) {
        for( int j=0; j<n_dir; ++j ) {
            if( i==j )
                continue;
            for( int k=0; k<n_difmag; ++k ) {
                for( int l=0; l<n_absdir; ++l ) {
                    cvector_t uq = ( dir[i].unit() + difmag[k]*dir[j] + absdir[l] ).unit();
                    vector<cvector_t> scan;
                    for( size_t m=0; m<mag.size(); ++m )
                        scan.push_back( mag[m] * uq );
                    scans.push_back( scan );
                }
            }
        }
    }
    return scans;
}

void help_and_exit()
{
    cerr<<"fftest limits inmode debmsg outfilter shape qxr qxi qyr qyi qzr qzi [q]\n";
    cerr<<"  limits:    \"def\" | qlim qpalim nlim\n";
    cerr<<"  inmode:    get q from 0:stdin | 1:cmdline | 2:loop\n";
    cerr<<"  debmsg:    0..6 (only if inmode=1)\n";
    cerr<<"  outfilter: return 0:all | 1:real | 2:imag\n";
    cerr<<"fftest limits loop shape\n";
    cerr<<"  limits:    \"def\" | qlim qpalim nlim\n";
    cerr<<"  loop:      3[cont_test] | 4[matching_test] | 5[for_plot]\n";
    cerr<<"  shape:     0[all] | 1..[specific]\n";
    exit(0);
}

#define NEXTARG if( (++arg)-argv >= argc ) help_and_exit()
#define MULTIARG(n) if( (arg+=n)-argv >= argc ) help_and_exit()

int main (int argc, const char *argv[])
{
    try {
        diagnosis.debmsg = 0;
        diagnosis.request_convergence = false;
        const char** arg = argv;
        NEXTARG;
        if ( !strncmp( *arg, "def", 3 ) ) {
            // do nothing
        } else {
            double q_limit = atof( *arg );
            NEXTARG;
            double qpa_limit = atof( *arg );
            NEXTARG;
            int n_limit = atoi( *arg );
            FormFactorPolyhedron::setLimits( q_limit, n_limit );
            PolyhedralFace::setLimits( qpa_limit, n_limit );
        }
        NEXTARG;
        int inmode = atoi( *arg );
        if( inmode==1 ) {
            NEXTARG;
            diagnosis.debmsg = atoi( *arg );
        }
        if( inmode<=2 ) {
            NEXTARG;
            int outfilter = atoi( *arg );
            NEXTARG;
            int ishape = atoi( *arg );
            IFormFactorBorn* P( make_particle( ishape ) );
            MULTIARG(6);
            cvector_t uq(
                complex_t( atof(*(arg-5)), atof(*(arg-4)) ),
                complex_t( atof(*(arg-3)), atof(*(arg-2)) ),
                complex_t( atof(*(arg-1)), atof(*(arg-0)) ) );
            double mag;
            if( inmode==0 ) {
                // for use through Frida
                int nop;
                std::cin >> nop;
                while( std::cin >> mag )
                    run( P, ishape, mag*uq, outfilter );
            } else if( inmode==1 ) {
                NEXTARG;
                mag = atof( *arg );
                run( P, ishape, mag*uq, outfilter );
            } else if( inmode==2 ) {
                int n_mag = 2001;
                double mag_i = 1e-20;
                double mag_f = 1e4;
                for( int i=1; i<n_mag; ++i ) {
                    //mag = 180.*i/(n_mag-1);
                    mag = mag_i*pow(mag_f/mag_i,i/(n_mag-1.));
                    run( P, ishape, mag*uq, outfilter );
                }
            }
            exit(0);
        }
        // it's some loop
        NEXTARG;
        int ishapepar = atoi( *arg );

        if( inmode==3 ) { // continuity test
            diagnosis.request_convergence = true;
            vector<vector<cvector_t>> scans = create_scans( 1 );
            double totmaxrelstep = 0;
            if( ishapepar==0 ) {
                for( int ishape=1; ishape<=nshape; ++ishape )
                    totmaxrelstep = std::max( totmaxrelstep, test_continuity( ishape, scans ) );
                cout<<"grand total max rel step = "<<totmaxrelstep<<"\n";
            } else {
                test_continuity( ishapepar, scans );
            }
            exit (0);
        }
        if( inmode==4 ) { // compare computation methods
            vector<vector<cvector_t>> scans = create_scans( 0 );
            if( ishapepar==0 ) {
                for( int ishape=1; ishape<=nshape; ++ishape )
                    test_matching( ishape, scans );
            } else
                test_matching( ishapepar, scans );
            exit (0);
        }
        // it's a straight loop over q
        vector<vector<cvector_t>> scans = create_scans( 2 );
        if( ishapepar==0 ) {
            for( int ishape=1; ishape<=nshape; ++ishape )
                loop_one_shape( ishape, scans );
        } else
            loop_one_shape( ishapepar, scans );
        exit(0);

    } catch( const char* ex ) {
        cerr<<"F(q) failed: "<<ex<<"\n";
        exit(0);
    }
}