1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
// Form factor computation: test program
// JWu 2016
// Reference:
// Joachim Wuttke
// "Form factor (Fourier shape transform) of polygon and polyhedron."
// To use these tests, FormFactorPolyhedron.cpp must be compiled
// with flag -D POLYHEDRAL_DIAGNOSTIC=ON
#include <cassert>
#include <iostream>
#include <iomanip>
#include <complex>
#include <vector>
#include "ParticleShapes.h"
#include "FormFactorTriangle.h"
using std::cout;
using std::cerr;
using std::vector;
static complex_t I(0.,1.);
static double eps(2e-16);
Diagnosis diagnosis;
int nshape = 13;
extern int n_limit;
extern double q_limit_series;
extern double qpa_limit_series;
//! Returns a pointer to a particle, according to given code
IFormFactorBorn* make_particle( int ishape )
{
if ( ishape==1 ) {
return new FormFactorDodecahedron(3.);
} else if( ishape==2 ) {
return new FormFactorIcosahedron(15.);
} else if( ishape==3 ) { // true tetrahedron
double alpha = 72 * Units::degree;
return new FormFactorTetrahedron(1., tan(alpha)/2/sqrt(3), alpha);
} else if( ishape==4 ) { // tetrahedral frustum
double alpha = 72 * Units::degree;
return new FormFactorTetrahedron(1., 0.5*tan(alpha)/2/sqrt(3), alpha);
} else if( ishape==5 ) { // tetrahedral frustum, flat one
double alpha = 80 * Units::degree;
return new FormFactorTetrahedron(1., 0.1*tan(alpha)/2/sqrt(3), alpha);
} else if( ishape==6 ) { // tetrahedral frustum as in BasicTest
return new FormFactorTetrahedron(16., 4., .8);
} else if( ishape==7 ) {
double alpha = 72 * Units::degree;
return new FormFactorCone6(10., 10., alpha);
} else if( ishape==8 ) {
return new FormFactorPyramid(1.5, .24, 1.);
} else if( ishape==9 ) {
return new FormFactorAnisoPyramid(2, .4, .24, 1.);
} else if( ishape==10) {
return new FormFactorPrism3(1.2, 1.);
} else if( ishape==11) {
return new FormFactorPrism6(1., 1.);
} else if( ishape==12) {
return new FormFactorTruncatedCube(4., 1.);
} else if( ishape==13 ) {
double alpha = 73 * Units::degree;
return new FormFactorCuboctahedron(1., 1., .8, alpha);
} else if( ishape==90 ) {
return new FormFactorTriangle(1.);
} else
throw "Shape not implemented";
}
//! Print q in a form that can be easily pasted to the command line for further investigation
std::string nice_q( cvector_t q )
{
std::ostringstream ret;
double qmax = 0;
ret << std::setprecision(16);
for( int i=0; i<3; ++i )
qmax = std::max( qmax, q[i].real() );
for( int i=0; i<3; ++i )
ret << q[i].real()/qmax << " " << q[i].imag()/qmax << " ";
ret << qmax;
return ret.str();
}
//! Bisect between two q's to find possible discontinuities
void bisect(
const IFormFactorBorn* polyh, int ishape, double q0mag,
cvector_t qi, complex_t ri, const Diagnosis di,
cvector_t qf, complex_t rf, const Diagnosis df,
double& maxrelstep )
{
assert( di!=df );
if( (qi-qf).mag()<4*eps*q0mag ) {
// narrowed down to minimal step, now check for continuity
double aval = (std::abs(ri) + std::abs(rf))/2;
double step = std::abs(ri-rf);
double relstep = step/aval;
if( relstep>maxrelstep){
cout<<"ishape="<<ishape<<": relstep "<<std::setprecision(8)<<relstep<<"="<<step<<"/"<<std::setprecision(16)<<aval<<" for "<<di<<"->"<<df<<" at q between "<<nice_q(qi)<<" and "<<nice_q(qf)<<"\n";
maxrelstep = relstep;
}
return;
}
cvector_t q2 = (qi + qf)/2.;
complex_t r2 = polyh->evaluate_for_q(q2);
Diagnosis d2 = diagnosis;
if( d2!=di )
bisect( polyh, ishape, q0mag, qi, ri, di, q2, r2, d2, maxrelstep );
if( d2!=df )
bisect( polyh, ishape, q0mag, q2, r2, d2, qf, rf, df, maxrelstep );
}
//! Computes form factor, and prints result according to outfilter.
void run( const IFormFactorBorn* polyh, int ishape, cvector_t q, int outfilter )
{
complex_t ret = polyh->evaluate_for_q(q);
cout<<std::scientific<<std::setprecision(16)<<std::setfill('0');
if ( outfilter==0 )
cout<<q.mag()<<" "<<std::abs(ret)<<" "<<ret.real()<<" "<<ret.imag()<<" "<<
diagnosis.nExpandedFaces<<std::noshowpos<<" "<<diagnosis.maxOrder;
else if( outfilter==1 )
cout<<ret.real();
else if( outfilter==2 )
cout<<ret.imag();
cout<<"\n";
}
//! Compute a form factor with modified control parameter settings
complex_t ff_modified( cvector_t q, const IFormFactorBorn* polyh, bool expand_qpa, bool expand_q )
{
PolyhedralFace::setLimits( expand_qpa ? 1e99 : 1e-99, 80 );
FormFactorPolyhedron::setLimits( expand_q ? 1e99 : 1e-99, 80 );
return polyh->evaluate_for_q( q );
}
void test_matching( int ishape, const vector<vector<cvector_t>>& scans )
{
cout<<ishape<<"\n";
cerr<<"shape "<<ishape<<" ...\n";
IFormFactorBorn* polyh( make_particle( ishape ) );
int n_mag = 25;
double mag_i = 1e-3;
double mag_f = 1e1;
for( int i=1; i<n_mag; ++i ) {
double mag = mag_i*pow(mag_f/mag_i,i/(n_mag-1.));
double res = 0;
for( const vector<cvector_t>& q_scan: scans ) {
assert( q_scan.size()== 1 );
cvector_t uq = q_scan[0];
const cvector_t q = mag * uq;
complex_t ff[2];
ff[0] = ff_modified( q, polyh, false, false );
ff[1] = ff_modified( q, polyh, true, false );
double dev = std::abs(ff[0]-ff[1])*2/(std::abs(ff[0])+std::abs(ff[1]));
res = std::max(res, dev );
if( 0 && dev>.1 )
cerr<<ishape<<" "<<mag<<" "<<std::setprecision(16)<<
dev<<" "<<ff[0]<<" "<<ff[1]<<" @ "<<q<<"\n";
}
cout<<" "<<mag*polyh->getRadius()<<" "<<std::setprecision(8)<<res<<"\n";
}
cout<<"\n";
}
double test_continuity( int ishape, const vector<vector<cvector_t>>& scans )
{
IFormFactorBorn* polyh( make_particle( ishape ) );
double maxrelstep = 0;
for( size_t j=0; j<scans.size(); ++j ) {
if( !(j%100) )
fprintf( stderr, "%2i: %8li/%li\r", ishape, j, scans.size() );
const vector<cvector_t>& q_scan = scans[j];
for( size_t i=1; i<q_scan.size(); ++i ) {
complex_t last_ret = polyh->evaluate_for_q(q_scan[i-1]);
Diagnosis last_diag = diagnosis;
complex_t ret = polyh->evaluate_for_q(q_scan[i]);
Diagnosis diag = diagnosis;
if( diag!=last_diag )
bisect( polyh, ishape, q_scan[i].mag(),
q_scan[i-1], last_ret, last_diag,
q_scan[i], ret, diag,
maxrelstep );
}
}
fprintf( stderr, "\n" );
cout<<"shape "<<ishape<<" => max rel step = "<<maxrelstep<<"\n";
return maxrelstep;
}
void loop_one_shape( int ishape, const vector<vector<cvector_t>>& scans )
{
IFormFactorBorn* polyh( make_particle( ishape ) );
for( size_t j=0; j<scans.size(); ++j ) {
if( !(j%100) )
fprintf( stderr, "%2i: %8li/%li\r", ishape, j, scans.size() );
const vector<cvector_t>& q_scan = scans[j];
for( const cvector_t q: q_scan ) {
complex_t ret = polyh->evaluate_for_q(q);
cout <<
ishape<<" " <<
std::setprecision(16) <<
q[0].real()<<" "<<q[0].imag()<<" " <<
q[1].real()<<" "<<q[1].imag()<<" " <<
q[2].real()<<" "<<q[2].imag()<<" " <<
std::setprecision(17) <<
q.mag()<<" " <<
ret.real()<<" "<<ret.imag()<<" "<<std::abs(ret)<<" " <<
diagnosis.nExpandedFaces<<" "<<diagnosis.maxOrder<<"\n";
}
}
}
vector<vector<cvector_t>> create_scans( int mode )
{
static int n_dir = 7;
cvector_t dir[n_dir] = {
{ 1., 0., 0. },
{ 0., 1., 0. },
{ 0., 0., 1. },
{ 0., 1., 1. },
{ 1., 0., 1. },
{ 1., 1., 0. },
{ 1., 1., 1. }
};
static int n_absdir = 8; // absorption component
cvector_t absdir[n_absdir] = {
{ 0., 0., 0. },
{ 1e-15*I, 0., 0. },
{ 0., 1e-10*I, 0. },
{ 0., 0., 1e-5*I },
{ .1*I, 0., 0. },
{ 0., .1*I, 0. },
{ 0., 0., .1*I },
{ .1*I, .1*I, .1*I }
};
vector<double> mag;
if ( mode==0 ) {
mag.resize(1);
mag[0] = 1;
} else if ( mode==1 ) {
mag = vector<double>( { 0, 1e-12, 1e-10, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3,
.01, .06, .2, .5, 1, 2, 5, 10, 20, 50, 100 } );
} else if (mode==2 ) {
mag.resize(1001);
mag[0] = 0.;
for( size_t i=1; i<mag.size(); ++i )
mag[i] = 1e-10*pow(1e13,(i-1.)/(mag.size()-2));
}
static const int n_difmag = 17;
static double difmag[n_difmag] =
{ 0., 3e-16, 1e-15, 3e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-9, 1e-7,
1e-5, 1e-3, .01, .03, .1, .2, .3 };
vector<vector<cvector_t>> scans;
for( int i=0; i<n_dir; ++i ) {
for( int j=0; j<n_dir; ++j ) {
if( i==j )
continue;
for( int k=0; k<n_difmag; ++k ) {
for( int l=0; l<n_absdir; ++l ) {
cvector_t uq = ( dir[i].unit() + difmag[k]*dir[j] + absdir[l] ).unit();
vector<cvector_t> scan;
for( size_t m=0; m<mag.size(); ++m )
scan.push_back( mag[m] * uq );
scans.push_back( scan );
}
}
}
}
return scans;
}
void help_and_exit()
{
cerr<<"fftest limits inmode debmsg outfilter shape qxr qxi qyr qyi qzr qzi [q]\n";
cerr<<" limits: \"def\" | qlim qpalim nlim\n";
cerr<<" inmode: get q from 0:stdin | 1:cmdline | 2:loop\n";
cerr<<" debmsg: 0..6 (only if inmode=1)\n";
cerr<<" outfilter: return 0:all | 1:real | 2:imag\n";
cerr<<"fftest limits loop shape\n";
cerr<<" limits: \"def\" | qlim qpalim nlim\n";
cerr<<" loop: 3[cont_test] | 4[matching_test] | 5[for_plot]\n";
cerr<<" shape: 0[all] | 1..[specific]\n";
exit(0);
}
#define NEXTARG if( (++arg)-argv >= argc ) help_and_exit()
#define MULTIARG(n) if( (arg+=n)-argv >= argc ) help_and_exit()
int main (int argc, const char *argv[])
{
try {
diagnosis.debmsg = 0;
diagnosis.request_convergence = false;
const char** arg = argv;
NEXTARG;
if ( !strncmp( *arg, "def", 3 ) ) {
// do nothing
} else {
double q_limit = atof( *arg );
NEXTARG;
double qpa_limit = atof( *arg );
NEXTARG;
int n_limit = atoi( *arg );
FormFactorPolyhedron::setLimits( q_limit, n_limit );
PolyhedralFace::setLimits( qpa_limit, n_limit );
}
NEXTARG;
int inmode = atoi( *arg );
if( inmode==1 ) {
NEXTARG;
diagnosis.debmsg = atoi( *arg );
}
if( inmode<=2 ) {
NEXTARG;
int outfilter = atoi( *arg );
NEXTARG;
int ishape = atoi( *arg );
IFormFactorBorn* P( make_particle( ishape ) );
MULTIARG(6);
cvector_t uq(
complex_t( atof(*(arg-5)), atof(*(arg-4)) ),
complex_t( atof(*(arg-3)), atof(*(arg-2)) ),
complex_t( atof(*(arg-1)), atof(*(arg-0)) ) );
double mag;
if( inmode==0 ) {
// for use through Frida
int nop;
std::cin >> nop;
while( std::cin >> mag )
run( P, ishape, mag*uq, outfilter );
} else if( inmode==1 ) {
NEXTARG;
mag = atof( *arg );
run( P, ishape, mag*uq, outfilter );
} else if( inmode==2 ) {
int n_mag = 2001;
double mag_i = 1e-20;
double mag_f = 1e4;
for( int i=1; i<n_mag; ++i ) {
//mag = 180.*i/(n_mag-1);
mag = mag_i*pow(mag_f/mag_i,i/(n_mag-1.));
run( P, ishape, mag*uq, outfilter );
}
}
exit(0);
}
// it's some loop
NEXTARG;
int ishapepar = atoi( *arg );
if( inmode==3 ) { // continuity test
diagnosis.request_convergence = true;
vector<vector<cvector_t>> scans = create_scans( 1 );
double totmaxrelstep = 0;
if( ishapepar==0 ) {
for( int ishape=1; ishape<=nshape; ++ishape )
totmaxrelstep = std::max( totmaxrelstep, test_continuity( ishape, scans ) );
cout<<"grand total max rel step = "<<totmaxrelstep<<"\n";
} else {
test_continuity( ishapepar, scans );
}
exit (0);
}
if( inmode==4 ) { // compare computation methods
vector<vector<cvector_t>> scans = create_scans( 0 );
if( ishapepar==0 ) {
for( int ishape=1; ishape<=nshape; ++ishape )
test_matching( ishape, scans );
} else
test_matching( ishapepar, scans );
exit (0);
}
// it's a straight loop over q
vector<vector<cvector_t>> scans = create_scans( 2 );
if( ishapepar==0 ) {
for( int ishape=1; ishape<=nshape; ++ishape )
loop_one_shape( ishape, scans );
} else
loop_one_shape( ishapepar, scans );
exit(0);
} catch( const char* ex ) {
cerr<<"F(q) failed: "<<ex<<"\n";
exit(0);
}
}
|