File: part3_other_objects.texi

package info (click to toggle)
libforms 1.0.93sp1-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 11,548 kB
  • sloc: ansic: 97,227; sh: 9,236; makefile: 858
file content (1343 lines) | stat: -rw-r--r-- 50,144 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
@node Part III Other Objects
@chapter Other Objects


@ifnottex
@menu
* Timer Object:     Timer Object
* XYPlot Object:    XYPlot Object
* Canvas Object:    Canvas Object
@end menu

@end ifnottex


@node Timer Object
@section Timer Object

Timer objects can be used to make a timer that runs down toward 0 or
runs up toward a pre-set value after which it starts blinking and
returns itself to the application program. This can be used in many
different ways, for example, to give a user a certain amount of time
for completing a task, etc. Also hidden timer objects can be created.
In this case the application program can take action at the moment the
timer expires. For example, you can use this to show a message that
remains visible until the user presses the "OK" button or until a
certain amount of time has passed.

The precision of the timer is not very high. Don't count on anything
better than, say, 50 milli-seconds. Run demo @file{timerprec.c} for an
actual accuracy measurement.


@ifnottex

@menu
* Adding Timer Objects:    Adding Timer Objects
* Timer Types:             Timer Types
* Timer Interaction:       Timer Interaction
* Other Timer Routines:    Other Timer Routines
* Timer Attributes:        Timer Attributes
* Remarks:                 Timer Remarks
@end menu

@end ifnottex


@node Adding Timer Objects
@subsection Adding Timer Objects

To add a timer to a form you use the routine
@findex fl_add_timer()
@anchor{fl_add_timer()}
@example
FL_OBJECT *fl_add_timer(int type, FL_Coord x, FL_Coord y,
                        FL_Coord w, FL_Coord h, const char *label);
@end example
@noindent
The meaning of the parameters is as usual.


@node Timer Types
@subsection Timer Types

There are at the moment three types of timers:
@table @code
@tindex FL_NORMAL_TIMER
@item FL_NORMAL_TIMER
Visible, Shows a label in a box which blinks when the timer expires.
@tindex FL_VALUE_TIMER
@item FL_VALUE_TIMER
Visible, showing the time left or the elapsed time. Blinks if the
timer expires.
@tindex FL_HIDDEN_TIMER
@item FL_HIDDEN_TIMER
Not visible.
@end table


@node Timer Interaction
@subsection Timer Interaction

When a visible timer expires it starts blinking. The user can stop the
blinking by pressing the mouse on it or by resetting the timer to 0.

The timer object is returned to the application program or its
callback called when the timer expired per default. You can
also switch off reporting the expiry of the timer by calling
@example
int fl_set_object_return(FL_OBJECT *obj, unsigned int when)
@end example
with @code{when} set to @code{@ref{FL_RETURN_NONE}}. To re-enable
reporting call it with one of @code{@ref{FL_RETURN_CHANGED}},
@code{@ref{FL_RETURN_END}}, @code{@ref{FL_RETURN_END_CHANGED}} or
@code{@ref{FL_RETURN_ALWAYS}}.


@node Other Timer Routines
@subsection Other Timer Routines

To set the timer to a particular value use
@findex fl_set_timer()
@anchor{fl_set_timer()}
@example
void fl_set_timer(FL_OBJECT *obj, double delay);
@end example
@noindent
@code{delay} gives the number of seconds the timer should run.
Use 0.0 to reset/de-blink the timer.

To obtain the time left in the timer use
@findex fl_get_timer()
@anchor{fl_get_timer()}
@example
double fl_get_timer(FL_OBJECT *obj);
@end example

 By default, a timer counts down toward zero and the value shown (for
@code{FL_VALUE_TIMER}s) is the time left until the timer expires. You
can change this default so the timer counts up and shows elapsed time
by calling
@findex fl_set_timer_countup()
@anchor{fl_set_timer_countup()}
@example
void fl_set_timer_countup(FL_OBJECT *obj, int yes_no);
@end example
@noindent
with a true value for the argument @code{yes_no}.

 A timer can be temporarily suspended (stopwatch) using the following
routine
@findex fl_suspend_timer()
@anchor{fl_suspend_timer()}
@example
void fl_suspend_timer(FL_OBJECT *obj);
@end example
@noindent
and later be resumed by
@findex fl_resume_timer()
@anchor{fl_resume_timer()}
@example
void fl_resume_timer(FL_OBJECT *obj);
@end example
@noindent
Unlike @code{@ref{fl_set_timer()}} a suspended timer keeps its
internal state (total delay, time left etc.), so when it is resumed,
it starts from where it was suspended.

Finally there is a routine that allows the application program to
change the way the time is presented in @code{FL_VALUE_TIMER}:
@tindex FL_TIMER_FILTER
@findex fl_set_timer_filter()
@anchor{fl_set_timer_filter()}
@example
typedef char *(FL_TIMER_FILTER)(FL_OBJECT *obj, double secs);
FL_TIMER_FILTER fl_set_timer_filter(FL_OBJECT *obj,
                                    FL_TIMER_FILTER filter);
@end example
@noindent
The function @code{filter} receives the timer ID and the time left for
count-down timers and the elapsed time for up-counting timers (in
units of seconds) and should return a string representation of the
time. The default filter returns the time in a
@code{hour:minutes:seconds.fraction} format.


@node Timer Attributes
@subsection Timer Attributes

Never use @code{FL_NO_BOX} as the boxtype for @code{FL_VALUE_TIMER}s.

The first color argument (@code{col1}) to
@code{@ref{fl_set_object_color()}} controls the color of the timer,
the second (@code{col2}) is the blinking color.


@node Timer Remarks
@subsection Remarks

Although having different APIs and the appearance of a different
interaction behaviour, the way timers and timeout callbacks work is
almost identical with one exception: you can deactivate a timer by
deactivating the form it belongs to. While the form is deactivated,
the timers callback will not be called, even if it expires. The
interaction will only resume when the form is activated again.

See @file{timer.c} for the use of timers.


@node XYPlot Object
@section XYPlot Object

A xyplot object gives you an easy way to display a tabulated function
generated on the fly or from an existing data file. An active xyplot
is also available to model and/or change a function.


@ifnottex

@menu
* Adding XYPlot Objects:   Adding XYPlot Objects
* XYPlot Types:            XYPlot Types
* XYPlot Interaction:      XYPlot Interaction
* Other XYPlot Routines:   Other XYPlot Routines
* XYPlot Attributes:       XYPlot Attributes
* Remarks:                 XYPlot Remarks
@end menu

@end ifnottex


@node Adding XYPlot Objects
@subsection Adding XYPlot Objects

To add an xyplot object to a form use the routine
@findex fl_add_xyplot()
@anchor{fl_add_xyplot()}
@example
FL_OBJECT *fl_add_xyplot(int type, FL_Coord x, FL_Coord y,
                         FL_Coord w, FL_Coord h, const char *label);
@end example
@noindent
It shows an empty box on the screen with the label per default below it.


@node XYPlot Types
@subsection XYPlot Types

The following types are available:
@table @code
@tindex FL_NORMAL_XYPLOT
@item FL_NORMAL_XYPLOT
A solid line is drawn through the data points.
@tindex FL_SQUARE_XYPLOT
@item FL_SQUARE_XYPLOT
Data drawn as a solid line plus squares at data points.
@tindex FL_CIRCLE_XYPLOT
@item FL_CIRCLE_XYPLOT
Data drawn as a solid line plus circles at data points.
@tindex FL_FILL_XYPLOT
@item FL_FILL_XYPLOT
Data drawn as a solid line with the area under the curve filled.
@tindex FL_POINTS_XYPLOT
@item FL_POINTS_XYPLOT
Only data points are drawn with. per default, stars.
@tindex FL_LINEPOINTS_XYPLOT
@item FL_LINEPOINTS_XYPLOT
Data drawn as a solid line plus, per default, stars at data point.
@tindex FL_DASHED_XYPLOT
@item FL_DASHED_XYPLOT
Data drawn as a dashed line.
@tindex FL_DOTTED_XYPLOT
@item FL_DOTTED_XYPLOT
Data drawn as a dotted line.
@tindex FL_DOTDASHED_XYPLOT
@item FL_DOTDASHED_XYPLOT
Data drawn as a dash-dot-dash line.
@tindex FL_IMPULSE_XYPLOT
@item FL_IMPULSE_XYPLOT
Data drawn by vertical lines.
@tindex FL_ACTIVE_XYPLOT
@item FL_ACTIVE_XYPLOT
Data drawn as a solid line plus squares at data points, accepting
manipulations.
@tindex FL_EMPTY_XYPLOT
@item FL_EMPTY_XYPLOT
Only the axes are drawn.
@end table

All xyplots display the curve auto-scaled to fit the plotting area.
Although there is no limitation on the actual data, a non-monotonic
increasing (or decreasing) x-axis might be plotted incorrectly. For
@code{FL_ACTIVE_PLOT} the x-coordinate of the data must be
monotonically increasing.

XYPlots of type @code{FL_POINTS_XYPLOT} and
@code{FL_LINEPOINTS_XYPLOT} are special in that the application can
change the symbol drawn on the data point.


@node XYPlot Interaction
@subsection XYPlot Interaction

Only @code{FL_ACTIVE_XYPLOT} report mouse events by default. Clicking
and dragging the data points (marked with little squares) will change
the data and result in the object getting returned to the application
(or the object's callback getting invoked). By default, the reporting
happens only when the mouse is released. In some situations, reporting
changes as soon as they happen might be desirable. To control when
mouse events are returned use the function
@example
int fl_set_object_return(FL_OBJECT *obj, unsigned int when);
@end example
where @code{when} can have the folowing values:
@table @code
@item @ref{FL_RETURN_NONE}
Never return or invoke callback.

@item @ref{FL_RETURN_END_CHANGED}
Return or invoke callback at end (mouse release) if one of the points
has been moved to a different place. This is the default.

@item @ref{FL_RETURN_CHANGED}
Return or invoke callback whenever a point has been moved.

@item @ref{FL_RETURN_END}
Return or invoke callback at end (mouse release) regardless if a
point has been moved is changed or not.

@item @ref{FL_RETURN_ALWAYS}
Return or invoke callback when a point has been moved or the mouse
button has been release).
@end table

Please note: a object can also been in inspect mode (see function
@code{@ref{fl_set_xyplot_inspect()}} below). In this case the object
gets returned (or its callback invoked) for all of the above settings
except (@code{@ref{FL_RETURN_NONE}}) when the mouse was released on
top of such one of the points.


To obtain the current value of the point that has changed, use the
routine
@findex fl_get_xyplot()
@anchor{fl_get_xyplot()}
@example
void fl_get_xyplot(FL_OBJECT *obj, float *x, float *y, int *i);
@end example
@noindent
where via @code{i} the data index (starting from 0) is returned while
@code{x}, @code{y} is the actual data point. If no point is changed,
@code{i} is set to -1.

It is possible to not to draw the squares that mark an active plot
using the following routine
@findex fl_set_xyplot_mark_active()
@anchor{fl_set_xyplot_mark_active()}
@example
void fl_set_xyplot_mark_active(FL_OBJECT *obj, int yes_no);
@end example
@noindent
with @code{yes_no} being set to false (0).

To set or replace the data for an xyplot, use
@findex fl_set_xyplot_data()
@anchor{fl_set_xyplot_data()}
@findex fl_set_xyplot_data_double()
@anchor{fl_set_xyplot_data_double()}
@example
void fl_set_xyplot_data(FL_OBJECT *obj, float *x, float *y, int n,
                        const char *title, const char *xlabel,
                        const char *ylabel);
void fl_set_xyplot_data_double(FL_OBJECT *obj, double *x, double *y, int n,
                               const char *title, const char *xlabel,
                               const char *ylabel);
@end example
@noindent
(The @code{fl_set_xyplot_data_double()} function allows to pass data
of type @code{double} but which get "demoted" to @code{float} type
when assigned to the xyplot object.) Here @code{x}, @code{y} is the
tabulated function, and @code{n} is the number of data points. If the
xyplot object being set exists already, old data will be cleared. Note
that the tabulated function is copied internally so you can free or do
whatever you want with the @code{x} and @code{y} arrays after the
function returns. @code{title} is a title that is drawn above the
XYPlot and @code{xlabel} and @code{ylabel} are the labels drawn at the
x- and y-axes.

You can also load a tabulated function from a file using the following
routine
@findex fl_set_xyplot_file()
@anchor{fl_set_xyplot_file()}
@example
int fl_set_xyplot_file(FL_OBJECT *obj, const char *filename,
                       const char *title, const char *xlabel,
                       const char *ylabel);
@end example
@noindent
The data file should be an ASCII file consisting of data lines. Each
data line must have two columns, indicating the (x,y) pair with a
space, tab or comma (@code{,}) separating the two columns. Lines that
start with any of @code{!}, @code{;} or @code{#} are considered to be
comments and are ignored. The functions returns the number of data
points successfully read or 0 if the file can't be opened/

To get a copy of the current XYPLot data, use
@findex fl_get_xyplot_data()
@anchor{fl_get_xyplot_data()}
@example
void fl_get_xyplot_data(FL_OBJECT *obj, float x[], float y[], int *n);
@end example
@noindent
The caller must supply the space for the data.

All XYPlot objects can be made aware of mouse clicks by using the
following routine
@findex fl_set_xyplot_inspect()
@anchor{fl_set_xyplot_inspect()}
@example
void fl_set_xyplot_inspect(FL_OBJECT *obj, int yes_no);
@end example
@noindent
Once an XYPlot is in inspect mode, whenever the mouse is released and
the mouse position is on one of the data point, the object is returned
to the caller or its callback is invoked. You can use
@code{@ref{fl_get_xyplot()}} to find out which point the mouse was
clicked on.

Another, perhaps even more general, way to read-off the values from an
XYPlot is to use a posthandler or an overlay positioner. See demo
@file{xyplotall.c} for the use of posthandler and
@file{positionerXOR.c} for an example of reading-off xyplot values
using an overlap positioner.


@node Other XYPlot Routines
@subsection Other XYPlot Routines

There are several routines to change the appearance of an XYPlot.
First of all, you can change the number of tic marks using the
following routine
@findex fl_set_xyplot_xtics()
@anchor{fl_set_xyplot_xtics()}
@findex fl_set_xyplot_ytics()
@anchor{fl_set_xyplot_ytics()}
@example
void fl_set_xyplot_xtics(FL_OBJECT *obj, int major, int minor);
void fl_set_xyplot_ytics(FL_OBJECT *obj, int major, int minor);
@end example
@noindent
where @code{major} and @code{minor} are the number of tic marks to be
placed on the plot and the number of divisions between major tic
marks. In particular, -1 suppresses the tic marks completely while 0
restores the default settings.

Note that the actual scaling routine may choose a value other than
that requested if it decides that this would make the plot look nicer,
thus @code{major} and @code{minor} are only taken as a hint to the
scaling routine. However, in almost all cases the scaling routine will
not generate a major that differs from the requested value by more
than 3.

It is possible to label the major tic marks with alphanumerical
characters instead of numerical values. To this end, use the following
routines
@findex fl_set_xyplot_alphaxtics()
@anchor{fl_set_xyplot_alphaxtics()}
@findex fl_set_xyplot_alphaytics()
@anchor{fl_set_xyplot_alphaytics()}
@example
void fl_set_xyplot_alphaxtics(FL_OBJECT *obj, const char *major,
                              const char *minor);
void fl_set_xyplot_alphaytics(FL_OBJECT *obj, const char *major,
                              const char *minor);
@end example
@noindent
where @code{major} is a string specifying the labels with the embedded
character @code{|} that specifies major divisions. For example, to
label a plot with Monday, Tuesday etc, @code{major} should be given as
@code{Monday|Tuesday|...}. Parameter @code{minor} is currently unused
and the minor divisions are set to 1, i.e, no divisions between major
tic marks. Naturally the number of major/minor divisions set by this
routine and @code{@ref{fl_set_xyplot_xtics()}} and
@code{@ref{fl_set_xyplot_ytics()}} can't be active at the same time
and the one that gets used is the one that was set last.

The above two functions can be used to specify non-uniform and
arbitary major divisions. To achieve this, you should embed the major
tic location information in the alphanumerical text. The location
information is introduced by the @ symbol and followed by a float
number specifying the coordinates in world coordinates. The entire
location info should follow the label. For example,
@code{"Begin@@1.0|3/4@@0.75|1.9@@1.9"} will produce three major tic
marks at 0.75, 1.0, and 1.9 and labeled "3/4", "begin", and "1.9".

To get a gridded XYPlot, use the following routine
@findex fl_set_xyplot_xgrid()
@anchor{fl_set_xyplot_xgrid()}
ffindex fl_set_xyplot_ygrid()
@example
void fl_set_xyplot_xgrid(FL_OBJECT *obj, int xgrid);
void fl_set_xyplot_ygrid(FL_OBJECT *obj, int ygrid);
@end example
@noindent
where @code{xgrid} and @code{ygrid} can be one of the following
@table @code
@tindex FL_GRID_NONE
@item FL_GRID_NONE
No grid.
@tindex FL_GRID_MAJOR
@item FL_GRID_MAJOR
Grid for the major divisions.
@tindex FL_GRID_MINOR
@item FL_GRID_MINOR
Grid for the major and minor divisions.
@end table

The grid line by default is drawn using a dotted line, which you can
change using the following routine
@findex fl_set_xyplot_grid_linestyle()
@anchor{fl_set_xyplot_grid_linestyle()}
@example
int fl_set_xyplot_grid_linestyle(FL_OBJECT *obj, int style);
@end example
@noindent
where @code{style} is the line style (@code{FL_SOLID}, @code{FL_DASH}
etc. @xref{Part IV Drawing Objects, , Drawing Objects}, for a
complete list). The function returns the old grid linestyle.

By default, the plotting area is automatically adjusted for tic labels
and titles so that a maximum plotting area results. This can be
undesirable in certain situations. To control the plotting area
manually, the following routines can be used
@findex fl_set_xyplot_fixed_xaxis()
@anchor{fl_set_xyplot_fixed_xaxis()}
@findex fl_set_xyplot_fixed_yaxis()
@anchor{fl_set_xyplot_fixed_yaxis()}
@example
void fl_set_xyplot_fixed_xaxis(FL_OBJECT *obj, const char *lm,
                               const char *rm)
void fl_set_xyplot_fixed_yaxis(FL_OBJECT *obj, const char *bm,
                               const char *tm)
@end example
@noindent
where @code{lm} and @code{rm} specify the right and left margin,
respectively, and @code{bm} and @code{tm} the bottom and top margins.
The pixel amounts are computed using the current label font and size.
Note that even for y-axis margins the length of the string, not the
height, is used as the margin, thus to leave space for one line of
text, a single character (say @code{m}) or two narrow characters (say
@code{ii}) should be used.

To restore automatic margin computation, set all margins to
@code{NULL}.

To change the size of the symbols drawn at data points, use the
following routine
@findex fl_set_xyplot_symbolsize()
@anchor{fl_set_xyplot_symbolsize()}
@example
void fl_set_xyplot_symbolsize(FL_OBJECT *obj, int size);
@end example
@noindent
where @code{size} should be given in pixels. The default is 4.

For @code{FL_POINTS_XYPLOT} and @code{FL_LINEPOINTS_XYPLOT} (main
plot or overlay), the application program can change the symbol using
the following routine
@tindex FL_XYPLOT_SYMBOL
@findex fl_set_xyplot_symbol()
@anchor{fl_set_xyplot_symbol()}
@example
typedef void (*FL_XYPLOT_SYMBOL)(FL_OBJECT *, int id,
                                 FL_POINT *p, int n, int w, int h);
FL_XYPLOT_SYMBOL fl_set_xyplot_symbol(FL_OBJECT *obj, int id,
                                      FL_XYPLOT_SYMBOL symbol);
@end example
@noindent
where @code{id} is the overlay id (0 means the main plot, and you can
use -1 to indicate all), and @code{symbol} is a pointer to the
function that will be called to draw the symbols on the data point.
The parameters passed to this function are the object pointer, the
overlay @code{id}, the center of the symbol (@code{p->x},
@code{p->y}), the number of data points (@code{n}) and the preferred
symbol size (@code{w}, @code{h}). If the type of the XYPlot
corresponding to @code{id} is not @code{FL_POINTS_XYPLOT} or
@code{FL_LINESPOINTS_XYPLOT}, the function will not be called.

To change or example a @code{FL_LINEPOINTS_XYPLOT} XYPlot to plot
filled small circles instead of the default crosses, the following
code could be used
@example
void drawsymbol(FL_OBJECT *obj, int id,
                FL_POINT *p, int n, int w, int h) @{
    int r = (w + h) / 4;
    FL_POINT *ps = p + n;

    for (; p < ps; p++)
        fl_circf(p->x, p->y, r, FL_BLACK);
@}

...
fl_set_xyplot_symbol(xyplot, 0, drawsymbol);
...
@end example

If a Xlib drawing routine is used it should use the current active
window (@code{FL_ObjWin(obj)}) and the current GC. Take care not to
call routines inside the @code{drawsymbol()} function that could
trigger a redraw of the XYPlot (such as
@code{@ref{fl_set_object_color()}}, @code{@ref{fl_set_xyplot_data()}}
etc.).

To use absolute bounds as opposed to actual bounds in data, use the
following routines
@findex fl_set_xyplot_xbounds()
@anchor{fl_set_xyplot_xbounds()}
@findex fl_set_xyplot_ybounds()
@anchor{fl_set_xyplot_ybounds()}
@example
void fl_set_xyplot_xbounds(FL_OBJECT *obj, double min, double max);
void fl_set_xyplot_ybounds(FL_OBJECT *obj, double min, double max);
@end example
@noindent
Data that fall outside of the range set this way will be clipped. To
restore autoscaling, call the function with @code{max} and @code{min}
set to exactly the same value. To reverse the axes (e.g., @code{min}
at right and @code{max} at left), set @code{min > max} for that axis.

To get the current bounds, use the following routines
@findex fl_get_xyplot_xbounds()
@anchor{fl_get_xyplot_xbounds()}
@findex fl_get_xyplot_ybounds()
@anchor{fl_get_xyplot_ybounds()}
@example
void fl_get_xyplot_xbounds(FL_OBJECT *obj, float *min, float *max);
void fl_get_xyplot_ybounds(FL_OBJECT *obj, float *min, float *max);
@end example
@noindent
Note that the bounds returned are the bounds used in clipping the
data, which are not necessarily the bounds used in computing the
world/screen mapping due to tic rounding.

To replace the value of a particular point use the routine
@findex fl_replace_xyplot_point()
@anchor{fl_replace_xyplot_point()}
@example
void fl_replace_xyplot_point(FL_OBJECT *obj, int index,
                             double x, double y);
@end example
@noindent
Here @code{index} is the index of the value to be replaced. The first
value has an index of 0.

It is possible to overlay several plots together using the following
call
@findex fl_add_xyplot_overlay()
@anchor{fl_add_xyplot_overlay()}
@example
void fl_add_xyplot_overlay(FL_OBJECT *obj, int id, float *x, float *y,
                           int npoints, FL_COLOR col);
@end example
@noindent
where @code{id} must be between 1 and
@tindex FL_MAX_XYPLOTOVERLAY
@code{FL_MAX_XYPLOTOVERLAY} (currently 32). Again, the data is copied to
an internal buffer (old data are freed if necessary).

As for the base data, a data file can be used to specify the (x,y)
function
@findex fl_add_xyplot_overlay_file()
@anchor{fl_add_xyplot_overlay_file()}
@example
int fl_add_xyplot_overlay_file(FL_OBJECT *obj, int ID,
                               const char *file, FL_COLOR col);
@end example
@noindent
The function returns the number of data points successfully read. The
type (@code{FL_NORMAL_XYPLOT} etc.) used in overlay plot is the same
as the object itself. To change an overlay style, use the following
call
@findex fl_set_xyplot_overlay_type()
@anchor{fl_set_xyplot_overlay_type()}
@example
void fl_set_xyplot_overlay_type(FL_OBJECT *obj, int id, int type);
@end example
@noindent
Note that although the API of adding an overlay is similar to adding
an object, an XYPlot overlay is not a separate object. It is simply a
property of an already existing XYPlot object.

To get the data of an overlay, use the following routine
@findex fl_get_xyplot_overlay_data()
@anchor{fl_get_xyplot_overlay_data()}
@example
void fl_get_xyplot_overlay_data(FL_OBJECT *obj, int id,
                                float x[], float y[], int *n);
@end example
@noindent
where @code{id} specifies the overlay number between 1 and
@code{FL_MAX_XYPLOTOVERLAY} or the number set via
@code{@ref{fl_set_xyplot_maxoverlays()}} (see below). (Actually, when
@code{id} is zero, this function returns the base data). The caller
must supply the storage space for the data. Upon function return,
@code{n} will be set to the number of data points retrieved.

Sometimes it may be more convenient and efficient to get the pointer
to the data rather than a copy of the data. To this end, the following
routine is available
@findex fl_get_xyplot_data_pointer()
@anchor{fl_get_xyplot_data_pointer()}
@example 
void fl_get_xyplot_data_pointer(FL_OBJECT *obj, int id,
                                float **x, float **y, int *n);
@end example
@noindent
Upon function return, @code{x} and @code{y} are set to point to the
data storage. You're free to modify the data and redraw the XYPlot
(via @code{@ref{fl_redraw_object()}}). The pointers returned may not
be freed.

If needed, the maximum number of overlays an object can have (which by
default is 32) can be changed using the following routine
@findex fl_set_xyplot_maxoverlays()
@anchor{fl_set_xyplot_maxoverlays()}
@example
int fl_set_xyplot_maxoverlays(FL_OBJECT *obj, int maxoverlays);
@end example
@noindent
The function returns the previous maximum number of overlays.

To obtain the number of data points, use the following routine
@findex fl_get_xyplot_numdata()
@anchor{fl_get_xyplot_numdata()}
@example
int fl_get_xyplot_numdata(FL_OBJECT *obj, int id);
@end example
@noindent
where @code{id} is the overlay ID with 0 being the base data set.

To insert a point into an xyplot, use the following routine
@findex fl_insert_xyplot_data()
@anchor{fl_insert_xyplot_data()}
@example
void fl_insert_xyplot_data(FL_OBJECT *obj, int id, int n,
                           double x, double y);
@end example
@noindent
where @code{id} is the overlay ID; @code{n} is the index of the point
after which the data new point specified by @code{x} and @code{y} is
to be inserted. Set @code{n} to -1 to insert the point in front. To
append to the data, set @code{n} to be equal or larger than the return
value of @code{fl_get_xyplot_numdata(obj, id)}.

To delete an overlay, use the following routine
@findex fl_delete_xyplot_overlay()
@anchor{fl_delete_xyplot_overlay()}
@example
void fl_delete_xyplot_overlay(FL_OBJECT *obj, int id);
@end example

It is possible to place inset texts on an XYPlot using the following
routine (up to @code{FL_MAX_XYPLOTOVERLAY} or the value set via
@code{@ref{fl_set_xyplot_maxoverlays()}} of such insets can be
accommodated):
@findex fl_add_xyplot_text()
@anchor{fl_add_xyplot_text()}
@example
void fl_add_xyplot_text(FL_OBJECT *obj, double x, double y,
                        const char *text, int align, FL_COLOR col);
@end example
@noindent
where @code{x} and @code{y} are the coordinates where text is to be
placed and align specifies the placement options relative to the
specified point (See @code{@ref{fl_set_object_lalign()}} for valid
options). If you for example specify @code{FL_ALIGN_LEFT}, the text
will appear on the left of the point and flushed toward the point (see
Fig. 21.1). This is mostly consistent with the label alignment except
that now the bounding box (of the point) is of zero dimension. Normal
text interpretation applies, i.e., if text starts with @code{@@} a
symbol is drawn.

To remove an inset text, use the following routine
@findex fl_delete_xyplot_text()
@anchor{fl_delete_xyplot_text()}
@example
void fl_delete_xyplot_text(FL_OBJECT *obj, const char *text);
@end example

Another kind of inset is the "keys" to the plots. A key is the
combination of drawing a segment of the plot line style with a piece
of text that describes what the corrsponding line represents.
Obviously, keys are most useful when you have more than one plot
(i.e.@: overlays). To add a key to a particular plot, use the
following routine
@findex fl_set_xyplot_key()
@anchor{fl_set_xyplot_key()}
@example
void fl_set_xyplot_key(FL_OBJECT *obj, int id, const char *keys);
@end example
@noindent
where @code{id} again is the overlay ID. To remove a key, set the key
to @code{NULL}. All the keys will be drawn together inside a box. The
position of the keys can be set via
@findex fl_set_xyplot_key_position()
@anchor{fl_set_xyplot_key_position()}
@example
void fl_set_xyplot_key_position(FL_OBJECT *obj, float x, float y,
                                int align)
@end example
@noindent
where @code{x} and @code{y} should be given in world coordinate
system. @code{align} specifies the alignment of the entire key box
relative to the given position (see Fig.21.1).

The following routine combines the above two functions and may be more
convenient to use
@findex fl_set_xyplot_keys()
@anchor{fl_set_xyplot_keys()}
@example
void fl_set_xyplot_keys(FL_OBJECT *obj, char *keys[],
                         float x, float y, int align);
@end example
@noindent
where @code{keys} specifies the keys for each plot. The last element
of the array must be @code{NULL} to indicate the end. The array index
is the plot id, i.e., @code{key[0]} is the key for the base plot,
@code{key[1]} the key for the the first overlay etc.

To change the font the key text uses, the following routine is available
@findex fl_set_xyplot_key_font()
@anchor{fl_set_xyplot_key_font()}
@example
void fl_set_xyplot_key_font(FL_OBJECT *obj, int style, int size);
@end example

Data may be interpolated using an nth order Lagrangian polynomial:
@findex fl_set_xyplot_interpolate()
@anchor{fl_set_xyplot_interpolate()}
@example
void fl_set_xyplot_interpolate(FL_OBJECT *obj, int id, int degree,
                               double grid);
@end example
@noindent
where @code{id} is the overlay ID (use 0 for the base data set);
@code{degree} is the order of the polynomial to use and @code{grid} is
the working grid onto which the data are to be interpolated. To
restore the default linear interpolation, use @code{degree} set to 0
or 1.

To change the line thickness of an xyplot (base data or overlay), the
follow routine is available:
@findex fl_set_xyplot_linewidth()
@anchor{fl_set_xyplot_linewidth()}
@example
void fl_set_xyplot_linewidth(FL_OBJECT *obj, int id, int width);
@end example
Again, use a @code{id} of value 0 to indicate the base data. Setting
@code{width} to zero restores the server default and typically is the
fastest.

By default, a linear scale in both the x and y direction is used. To
change the scaling, use the following call
@findex fl_set_xyplot_xscale()
@anchor{fl_set_xyplot_xscale()}
@findex fl_set_xyplot_yscale()
@anchor{fl_set_xyplot_yscale()}
@example
void fl_set_xyplot_xscale(FL_OBJECT *obj, int scale, double base);
void fl_set_xyplot_yscale(FL_OBJECT *obj, int scale, double base);
@end example
@noindent
where the valid scaling options for scale are
@tindex FL_LINEAR
@tindex FL_LOG
@code{FL_LINEAR} and @code{FL_LOG}, and @code{base} is used only for
@code{FL_LOG} and in that case it is the base of the logarithm to be
used.

Use the following routine to clear an xyplot
@findex fl_clear_xyplot()
@anchor{fl_clear_xyplot()}
@example
void fl_clear_xyplot(FL_OBJECT *obj);
@end example
@noindent
This routine frees all data associated with an XYPlot, including all
overlays and all inset texts. This routine does not reset all plotting
options, such as line thickness, major/minor divisions etc.@: nor does
it free all memories associated with the XYPlot, for this
@code{@ref{fl_free_object()}} is needed.

The mapping between the screen coordinates and data can be obtained
using the following routines
@findex fl_get_xyplot_xmapping()
@anchor{fl_get_xyplot_xmapping()}
@findex fl_get_xyplot_ymapping()
@anchor{fl_get_xyplot_ymapping()}
@example
void fl_get_xyplot_xmapping(FL_OBJECT *obj, float *a, float *b);
void fl_get_xyplot_xmapping(FL_OBJECT *obj, float *a, float *b);
@end example
@noindent
where @code{a} and @code{b} are the mapping constants and are used as
follows:
@example
screenCoord = a * data + b       (linear scale)
screenCoord = a * log(data) / log(p) + b (log scale)
@end example
@noindent
where p is the base of the requested logarithm.

If you need to do conversions only occasionally (for example,
converting the position of a mouse click to a data point or vice
versa) the following routines might be more convenient
@findex fl_xyplot_s2w()
@anchor{fl_xyplot_s2w()}
@example
void fl_xyplot_s2w(FL_OBJECT *obj, double sx, double sy,
                   float *wx, float *wy);
void fl_xyplot_w2s(FL_OBJECT *obj, double wx, double wy,
                   float *sx, float *sy);
@end example
@noindent
where @code{sx} and @code{sy} are the screen coordinates and @code{wx}
and @code{wy} are the world coordinates.


@node XYPlot Attributes
@subsection XYPlot Attributes

Don't use @code{FL_NO_BOX} as the boxtype of an XYPlot object that is
to be changed dynamically. To change the font size and style for the
tic labels, inset text etc., use @code{@ref{fl_set_object_lsize()}}
and @code{@ref{fl_set_object_lstyle()}}.

The first color argument (@code{col1}) to
@code{@ref{fl_set_object_color()}} controls the color of the box and
the second (@code{col2}) the actual XYPlot color.


@node XYPlot Remarks
@subsection Remarks


The interpolation routine is public and can be used in the application
program
@findex fl_interpolate()
@anchor{fl_interpolate()}
@example
int fl_interpolate(const float *inx, const float *iny, int num_in,
                   float *outx, float *outy, double grid, int ndeg);
@end example
@noindent
If successful, the function returns the number of points in the
interpolated function (@code{(inx[num_in - 1] - inx[0]) / grid +
1.01}), otherwise it returns -1. Upon return, @code{outx} and
@code{outy} are set to the interpolated values. The caller must
allocate the storage for @code{outx} and @code{outy}.

See @file{xyplotall.c} and @code{xyplotactive.c} for examples of the
use of XYPlot objects. There is also an example program called
@file{xyplotover.c}, which shows the use of overlays. In addition,
@code{xyplotall.c} shows a way of getting all mouse clicks without
necessarily using an active XYPlot.

It is possible to generate a PostScript output of an XYPlot. See the
function @code{@ref{fl_object_ps_dump()}} documented in Part V.




@node Canvas Object
@section Canvas Object

A canvas is a managed plain X (sub)window. It it different from the
free object in that a canvas is guaranteed to be associated with a
window that is not shared with any other object, thus an application
program has more freedom in utilizing a canvas, such as using its own
colormap or rendering double-buffered OpenGL in it etc. A canvas is
also different from a raw application window because a canvas is
decorated differently and its geometry is managed, e.g., you can use
@code{@ref{fl_set_object_resize()}} to control its position and size
after its parent form is resized.

@ifnottex

@menu
* Adding Canvas Objects:     Adding Canvas Objects
* Canvas Types:              Canvas Types
* Canvas Interaction:        Canvas Interaction
* Other Canvas Routines:     Other Canvas Routines
* Canvas Attributes:         Canvas Attributes
* OpenGL Canvas:             OpenGL Canvas
@end menu

@end ifnottex


@node Adding Canvas Objects
@subsection Adding Canvas Objects

Adding an object To add a canvas to a form you use the routine
@findex fl_add_canvas()
@anchor{fl_add_canvas()}
@example
FL_OBJECT *fl_add_canvas(int type, FL_Coord x, FL_Coord y,
                         FL_Coord w, FL_Coord h, const char *label);
@end example
@noindent
The meaning of the parameters is as usual. The label is not drawn but
used as the window name for possible resource and playback purposes.
If label is empty, the window name will be generated on the fly as
@code{flcanvasn}, where @code{n = 0, 1,...}.

@node Canvas Types
@subsection Canvas Types

The only types of canvases currently available is
@tindex FL_NORMAL_CANVAS
@code{FL_NORMAL_CANVAS}.


@node Canvas Interaction
@subsection Canvas Interaction

The canvas class is designed to maximize the programmer's ability to
deal with situations where standard form classes may not be flexible
enough. With canvases, the programmer has complete control over
everything that can happen to a window. It thus doesn't work like
other objects that get returned by @code{@ref{fl_do_forms()}} etc.@:
or have their callbacks invoked.

Instead the user can request that for specific @code{X} events (not
XForms object events like @code{FL_PRESS}, @code{FL_KEYPRESS} etc.!)
callbacks are invoked that receive all information about the
@code{XEvent} that led to their invocation. This obviously requires
some understanding of how the X Window system works.

The interaction with a canvas is typically set up as follows. First,
you register the @code{X} events you're interested in and their
handlers using the following routine
@tindex FL_HANDLE_CANVAS
@findex fl_add_canvas_handler()
@anchor{fl_add_canvas_handler()}
@example
typedef int (*FL_HANDLE_CANVAS)(FL_OBJECT *obj, Window win,
                                int win_width, int win_height,
                                XEvent *xev, void *user_data);
void fl_add_canvas_handler(FL_OBJECT *obj, int event,
                           FL_HANDLE_CANVAS handler, void *user_data);
@end example
@noindent
where @code{event} is the @code{XEvent} type, e.g. @code{Expose} etc.
The @code{@ref{fl_add_canvas_handler()}} function first registers a
procedure with the event dispatching system of the Forms Library, then
it figures out the event masks corresponding to the event @code{event}
and invokes @code{@ref{fl_addto_selected_xevent()}} to solicit the
event from the server. Other book keeping (e.g.@: drawing the box that
encloses the canvas, etc.) is done by the object handler.

When a canvas handler is installed the library tries to set the
correct mask for the the @code{Xevent} (which then tells the X Window
system which events to pass on to the Forms Library). But since
translation from an @code{Xevent} to a @code{Xevent} mask is not
unique, the default translation of the @code{Xevent} to a mask may or
may not match exactly the intention of the application. Two events,
namely @code{MotionNotify} and @code{ButtonPress}, are likely
candidates that need further clarification from the application. There
are two functions to add or delete from the mask,
@code{@ref{fl_addto_selected_xevent()}} and
@code{@ref{fl_remove_selected_xevent()}}.

By default, when a mouse motion handler (i.e.@: for the
@code{MotionNotify} events) is registered, it is assumed that, while
the application wants to be informed about mouse movements, it's not
interested in a continous motion monitoring (tracking), thus per
default @code{MotionNotify} events are requested with
@code{PointerMotionHintMask} being set in the mask to reduce the
number of events generated. If this is not the case and in fact the
application wants to use the mouse motion as some type of graphics
control, the default behavior would appear "jerky" as not every mouse
motion is reported. To change the default behavior so that every mouse
motion is reported, you need to call
@code{@ref{fl_remove_selected_xevent()}} with mask set to
@code{PointerMotionHintMask}. Furthermore, the mouse motion is
reported regardless if a mouse button is pressed or not. If the
application is interested in mouse motion only when a mouse button is
pressed @code{@ref{fl_remove_selected_xevent()}} should be called with
a mask of @code{PointerMotionMask|PointerMotionHintMask}.

With @code{ButtonPress} events you need to call
@code{@ref{fl_addto_selected_xevent()}} with a mask of
@code{OwnerGrabButtonMask} if you are to add or remove other canvas
handlers in the button press handler.

To remove a registered handler, use
@findex fl_remove_canvas_handler()
@anchor{fl_remove_canvas_handler()}
@example
void fl_remove_canvas_handler(FL_OBJECT *obj, int event,
                              FL_CANVAS_HANDLER handler);
@end example
@noindent
After this function call the canvas ceases to receive the events for
@code{event}. The corresponding default bits in the @code{XEvent} mask
as were set by @code{@ref{fl_add_canvas_handler()}} are cleared.
If you added extra ones with @code{@ref{fl_addto_selected_xevent()}}
you should reset them using @code{@ref{fl_remove_selected_xevent()}}.

To obtain the window ID of a canvas, use
@findex fl_get_canvas_id()
@anchor{fl_get_canvas_id()}
@example
Window fl_get_canvas_id(FL_OBJECT *obj);
@end example
@noindent
or use the generic function (macro) (recommended)
@findex FL_ObjWin()
@anchor{FL_ObjWin()}
@example
Window FL_ObjWin(FL_OBJECT *obj);
@end example
@noindent

Of course, the window ID only has a meaning after the form/canvas is
shown. When the canvas or the form the canvas is on is hidden (via
@code{@ref{fl_hide_object()}} or @code{@ref{fl_hide_form()}}), the
canvas window may be destroyed. If the canvas is shown again, a new
window ID for the canvas may be created. Thus recording the canvas
window ID in a static variable is not the right thing to do. It is
much safer (and it doesn't add any run-time overhead) to obtain the
canvas window ID via @code{@ref{FL_ObjWin()}} whenever it's needed. If
your application must show and hide the canvas/form repeatedly, you
might consider to "unmap" the window, a way of removing the window
from the screen without actually destroying it and later re-mapping
the window to show it. The Xlib API functions for doing this are
@code{XUnmapWindow()} and @code{XMapWindow()}. Both require two
arguments. the display, which you can determine by calling
@code{@ref{fl_get_display()}} and the window ID, which can be obtained
by using @code{form->window} if you want to (un)map a form or
@code{FL_ObjWin(obj)} for a canvas.


@node Other Canvas Routines
@subsection Other Canvas Routines

Upon canvas creation, all its window related attributes, e.g.@:
visual, depth and colormap etc., are inherited from its parent (i.e.@:
the window of the form the canvas belongs to). To modify any
attributes of the canvas, use the following routine
@findex fl_set_canvas_attributes()
@anchor{fl_set_canvas_attributes()}
@example
void fl_set_canvas_attributes(FL_OBJECT *obj, unsigned mask,
                              XSetWindowAttributes *xswa);
@end example
@noindent
See @code{XSetWindowAttributes()} for the definition of the structure
members. Note that this routine should not be used to manipulate
events.

Other functions exists that can be used to modify the color/visual
property of a canvas:
@findex fl_set_canvas_colormap()
@anchor{fl_set_canvas_colormap()}
@findex fl_get_canvas_colormap()
@anchor{fl_get_canvas_colormap()}
@findex fl_set_canvas_visual()
@anchor{fl_set_canvas_visual()}
@findex fl_set_canvas_depth()
@anchor{fl_set_canvas_depth()}
@findex fl_get_canvas_depth()
@anchor{fl_get_canvas_depth()}
@example
void fl_set_canvas_colormap(FL_OBJECT *obj, Colormap map);
Colormap fl_get_canvas_colormap(FL_OBJECT *obj);
void fl_set_canvas_visual(FL_OBJECT *obj, Visual *vi);
void fl_set_canvas_depth(FL_OBJECT *obj, int depth);
int fl_get_canvas_depth(FL_OBJECT *obj);
@end example
@noindent
Note that changing visual or depth does not generally make sense once
the canvas window is created (which happens when the parent form is
shown). Also, typically if you change the canvas visual, you probably
should also change the canvas depth to match the visual.

Caution should also applied when using
@code{@ref{fl_set_canvas_colormap()}}: when the canvas window goes
away, e.g.@: as a result of a call of @code{@ref{fl_hide_form()}}, the
colormap associated with the canvas is freed (destroyed). This likely
will cause problems if a single colormap is used for multiple canvases
as each canvas will attempt to free the same colormap, resulting in
an X error. If your application works this way, i.e.@: the same
colormap is used on multiple canvases (via
@code{@ref{fl_set_canvas_colormap()}}), you should use the following
routine to prevent the canvas from freeing the colormap:
@findex fl_share_canvas_colormap()
@anchor{fl_share_canvas_colormap()}
@example
void fl_share_canvas_colormap(FL_OBJECT *obj, Colormap colormap);
@end example
@noindent
This function works the same way as
@code{@ref{fl_set_canvas_colormap()}} except that it also sets a
internal flag so the colormap isn't freed when the canvas goes away.

By default, canvases are decorated with an @code{FL_DOWN_FRAME}. To
change the decoration, change the the boxtype of the canvas and the
boxtype will be translated into a frame that best approximates the
appearance of the request boxtype (e.g.@: a @code{FL_DOWN_BOX} is
translated into a @code{FL_DOWN_FRAME} etc). Note that not all frame
types are appropriate for decorations.

The following routine is provided to facilitate the creation of a
colormap appropriate for a given visual to be used with a canvas:
@findex fl_create_colormap()
@anchor{fl_create_colormap()}
@example
Colormap fl_create_colormap(XVisualInfo *xvinfo, int n_colors);
@end example
@noindent
where @code{n_colors} indicates how many colors in the newly created
colormap should be filled with XForms' default colors (to avoid
flashing effects). Note however, that the colormap entry 0 is
allocated with either black or white even if you specify 0 for
@code{n_colors}. To prevent this from happening (so you get a
completely empty colormap), set @code{n_colors} to -1. @xref{Part
IV Drawing Objects, , Drawing Objects}, on how to obtain the
@code{XVisualInfo} for the window. Depending on the window manager, a
colormap other than the default may not get installed correctly. If
you're working with such a window manager, you may have to install the
colormap yourself when the mouse pointer enters the canvas using
@code{XInstallColormap()}.

By default, objects with shortcuts appearing on the same form as the
canvas will "steal" keyboard inputs if they match the shortcuts. To
disable this feature, use the following routine with a false (0)
value for @code{yes_no}:
@findex fl_canvas_yield_to_shortcut()
@anchor{fl_canvas_yield_to_shortcut()}
@example
void fl_canvas_yield_to_shortcut(FL_OBJECT *obj, int yes_no);
@end example


@node Canvas Attributes
@subsection Canvas Attributes

Some of the attributes, such as boxtype, do not apply to the canvas
class.

The first color argument (@code{col1}) to
@code{@ref{fl_set_object_color()}} can be used to set the background
color of the canvas (by default, a canvas has no background color).
The second argument (@code{col2}) controls the decoration color (if
applicable).


@node OpenGL Canvas
@subsection OpenGL Canvas

Deriving specialized canvases from the general canvas object is
possible. See the next subsection for general approaches how this is
done. The following routines work for OpenGL (under X) as well as
Mesa, a free OpenGL clone.

To add an OpenGL canvas to a form, use the following routine
@findex fl_add_glcanvas()
@anchor{fl_add_glcanvas()}
@example
FL_OBJECT *fl_add_glcanvas(int type, FL_Coord x, FL_Coord y,
                           FL_Coord w, FL_Coord h, const char *label);
@end example
@noindent
where @code{type} is the same as for a normal canvas. A "glcanvas"
created this way will have the following attributes by default
@example
GLX_RGBA,
GLX_DEPTH_SIZE: 1,
GLX_RED_SIZE: 1, GLX_GREEN_SIZE: 1, GLX_BLUE_SIZE: 1,
GLX_DOUBLEBUFFER
@end example

The application program can modify these defaults using the following
routine (before the creation of glcanvases)
@findex fl_set_glcanvas_defaults()
@anchor{fl_set_glcanvas_defaults()}
@example
void fl_set_glcanvas_defaults(const int *attributes);
@end example
@noindent
See @code{glXChooseVisual()} for a list of valid attributes.

To get the current defaults use
@findex fl_get_glcanvas_defaults()
@anchor{fl_get_glcanvas_defaults()}
@example
void fl_get_glcanvas_defaults(int *attributes);
@end example

It is also possible to change the attributes on a canvas by canvas
basis by utilizing the following routine:
@findex fl_set_glcanvas_attributes()
@anchor{fl_set_glcanvas_attributes()}
@example
void fl_set_glcanvas_attributes(FL_OBJECT *obj, const int *attributes);
@end example
@noindent
Note that this routine can be used to change a glcanvas attributes on
the fly even if the canvas is already visible and active.

To obtain the attributes of a particular canvas, use the following routine
@findex fl_get_glcanvas_attributes()
@anchor{fl_get_glcanvas_attributes()}
@example
void fl_get_glcanvas_attributes(FL_OBJECT *obj, int attributes[]);
@end example
@noindent
The caller must supply the space for the attribute values.

To obtain the the glx context (for whatever purposes), use
@findex fl_get_glcanvas_context()
@anchor{fl_get_glcanvas_context()}
@example
GLXContext fl_get_glcanvas_context(FL_OBJECT *obj);
@end example

Note that by default the rendering context created by a glcanvas uses
direct rendering (i.e., by-passing the Xserver). To change this
default, i.e.@: to always render through the Xserver, use the following
routine:
@findex fl_set_glcanvas_direct()
@anchor{fl_set_glcanvas_direct()}
@example
void fl_set_glcanvas_direct(FL_OBJECT *obj, int yes_no);
@end example
@noindent
with the argument @code{yes_no} set to false (0).

Remember that OpenGL drawing routines always draw into the window the
current context is bound to. For application with a single canvas,
this is not a problem. In case of multiple canvases, the canvas driver
takes care of setting the proper context before invoking the expose
handler. In some cases, the application may want to draw into canvases
actively. In this case, explicit drawing context switching may be
required. To this end, use the following routine
@findex fl_activate_glcanvas()
@anchor{fl_activate_glcanvas()}
@example
void fl_activate_glcanvas(FL_OBJECT *obj);
@end example
@noindent
before drawing into glcanvas object.

Finally there is a routine that can be used to obtain the @code{XVisual}
information that is used to create the context
@findex fl_get_glcanvas_xvisualinfo()
@anchor{fl_get_glcanvas_xvisualinfo()}
@example
XVisualInfo *fl_get_glcanvas_xvisualinfo(FL_OBJECT *obj);
@end example
@noindent
See demo program @code{gl.c} for an example use of a glcanvas.