1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
|
/*
*
* This file is part of the XForms library package.
*
* XForms is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1, or
* (at your option) any later version.
*
* XForms is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with XForms; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
*/
/*
* $Id: image_jquant.c,v 1.0 2002/05/08 05:16:30 zhao Release $
*
* Copyright (C) 1998 T.C. Zhao
*
* The 2-pass quantizer from the JPEG distribution by the
* Independent JPEG group. Except for minor interface changes, the code
* here is almost verbatim copy of the IJG's code, which
* has the following copyright:
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the XForms library package.
*
*/
#include "forms.h"
#include "flimage.h"
#include "flimage_int.h"
void
fl_select_mediancut_quantizer(void)
{
flimage_quantize_rgb = fl_j2pass_quantize_rgb;
flimage_quantize_packed = fl_j2pass_quantize_packed;
}
#define R_SCALE 2 /* scale R distances by this much */
#define G_SCALE 3 /* scale G distances by this much */
#define B_SCALE 1 /* and B by this much */
#define C0_SCALE R_SCALE
#define C1_SCALE G_SCALE
#define C2_SCALE B_SCALE
#define LOCAL(a) static a
#define METHODDEF(a) static a
#define BITS_IN_JSAMPLE FL_PCBITS
#define MAXJSAMPLE ((1<<BITS_IN_JSAMPLE)-1)
typedef unsigned char JSAMPLE;
#define GETJSAMPLE(a) ((a)&0xff)
#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
/* These will do the right thing for either R,G,B or B,G,R color order,
* but you may not like the results for other color orders.
*/
#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
#define HIST_C1_BITS 6 /* bits of precision in G histogram */
#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
/* Number of elements along histogram axes. */
#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
/* These are the amounts to shift an input value to get a histogram index. */
#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
typedef u_short histcell; /* histogram cell; prefer an unsigned type */
typedef histcell *histptr; /* for pointers to histogram cells */
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
typedef hist1d *hist2d; /* type for the 2nd-level pointers */
typedef hist2d *hist3d; /* type for top-level pointer */
#if BITS_IN_JSAMPLE == 8
typedef short FSERROR; /* 16 bits should be enough */
typedef int LOCFSERROR; /* use 'int' for calculation temps */
#else
typedef int FSERROR; /* may need more than 16 bits */
typedef int LOCFSERROR; /* be sure calculation temps are big enough */
#endif
typedef FSERROR *FSERRPTR; /* pointer to error array (in FAR storage!) */
typedef struct
{
int c0min, c0max;
int c1min, c1max;
int c2min, c2max;
int volume;
long colorcount;
}
box;
typedef box *boxptr;
typedef struct
{
hist3d histogram; /* pointer to the 3D histogram array */
FSERRPTR fserrors; /* accumulated-errors array */
int *error_limiter; /* table for clamping the applied error */
int on_odd_row; /* flag to remember which row we are on */
int *colormap[3]; /* selected colormap */
int actual_number_of_colors; /* number of selected colors */
FL_IMAGE *im; /* for progress monitor only */
}
SPEC;
static void init_error_limit(SPEC *);
static void prescan_quantize(SPEC *, unsigned char **, unsigned char **,
unsigned char **, int, int);
static void select_colors(SPEC *sp, int desired_colors);
static void pass2_fs_dither(SPEC *, unsigned char **,
unsigned char **, unsigned char **,
unsigned short **, int, int);
static void
cleanup_spec(SPEC *sp)
{
int i;
if (sp->fserrors)
fl_free(sp->fserrors);
if (sp->error_limiter)
fl_free(sp->error_limiter - MAXJSAMPLE);
sp->error_limiter = 0;
sp->fserrors = 0;
if (sp->histogram)
{
for (i = 0; i < HIST_C0_ELEMS; i++)
{
if (sp->histogram[i])
fl_free(sp->histogram[i]);
sp->histogram[i] = 0;
}
}
fl_free(sp->histogram);
sp->histogram = 0;
fl_free(sp);
}
static SPEC *
alloc_spec(int w, int h, int *rlut, int *glut, int *blut)
{
int fs_size = (w + 2) * (3 * sizeof(FSERROR)), i;
SPEC *sp = fl_calloc(1, sizeof(*sp));
int err = !sp;
if (!err)
init_error_limit(sp);
err = err || !(sp->fserrors = fl_calloc(1, fs_size));
err = err || !(sp->histogram = fl_calloc(1, HIST_C0_ELEMS * sizeof(hist2d)));
for (i = 0; !err && i < HIST_C0_ELEMS; i++)
err = !(sp->histogram[i] = fl_calloc(1,
HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell)));
if (err)
{
cleanup_spec(sp);
sp = 0;
}
else
{
sp->colormap[0] = rlut;
sp->colormap[1] = glut;
sp->colormap[2] = blut;
}
return sp;
}
int
fl_j2pass_quantize_rgb(unsigned char **red,
unsigned char **green,
unsigned char **blue, int w, int h,
int max_color,
unsigned short **ci, int *actual_color,
int *red_lut,
int *green_lut,
int *blue_lut, FL_IMAGE * im)
{
SPEC *sp = alloc_spec(w, h, red_lut, green_lut, blue_lut);
int i;
if (!sp)
{
*actual_color = 0;
if (im)
im->error_message(im, "Failed to allocate working memory");
return -1;
}
if (*actual_color > 256)
*actual_color = 256;
sp->im = im;
/* get histogram */
prescan_quantize(sp, red, green, blue, w, h);
select_colors(sp, max_color);
/* re-init histogram for inverse lookup */
for (i = 0; i < HIST_C0_ELEMS; i++)
memset(sp->histogram[i], 0,
HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
sp->on_odd_row = 0;
pass2_fs_dither(sp, red, green, blue, ci, w, h);
*actual_color = sp->actual_number_of_colors;
cleanup_spec(sp);
if (im)
{
im->completed = im->h;
im->visual_cue(im, "Quantization Done");
}
return 0;
}
int
fl_j2pass_quantize_packed(unsigned int **packed,
int w, int h, int max_color,
unsigned short **ci, int *actual_color,
int *red_lut,
int *green_lut,
int *blue_lut, FL_IMAGE * im)
{
SPEC *sp = alloc_spec(w, h, red_lut, green_lut, blue_lut);
unsigned char **red = 0, **green = 0, **blue = 0;
int i, err;
if (!sp)
{
if (im)
im->error_message(im, "Quantize: can't allocate memory");
*actual_color = 0;
return -1;
}
sp->im = im;
/* we can process the image one piece a time to avoid the heavy memory
usage, but packed is not that common. For now, do it in one chunk */
err = !(red = fl_get_matrix(h, w, sizeof(**red)));
err = err || !(green = fl_get_matrix(h, w, sizeof(**red)));
err = err || !(blue = fl_get_matrix(h, w, sizeof(**red)));
if (err)
{
const char *s = "Quantize: can't allocate memory";
if (im)
im->error_message(im, s);
else
fprintf(stderr, "%s\n", s);
fl_free_matrix(red);
fl_free_matrix(green);
fl_free_matrix(blue);
}
for (i = w * h; --i >= 0;)
FL_UNPACK(packed[0][i], red[0][i], green[0][i], blue[0][i]);
/* get histogram */
prescan_quantize(sp, red, green, blue, w, h);
select_colors(sp, max_color);
/* re-init histogram for inverse lookup */
for (i = 0; i < HIST_C0_ELEMS; i++)
memset(sp->histogram[i], 0,
HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
sp->on_odd_row = 0;
pass2_fs_dither(sp, red, green, blue, ci, w, h);
*actual_color = sp->actual_number_of_colors;
fl_free_matrix(red);
fl_free_matrix(green);
fl_free_matrix(blue);
cleanup_spec(sp);
if (im)
{
im->completed = im->h;
im->visual_cue(im, "Quantization Done");
}
return 0;
}
/* log2(histogram cells in update box) for each axis; this can be adjusted */
#define BOX_C0_LOG (HIST_C0_BITS-3)
#define BOX_C1_LOG (HIST_C1_BITS-3)
#define BOX_C2_LOG (HIST_C2_BITS-3)
#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
LOCAL(int)
find_nearby_colors(SPEC *sp, int minc0, int minc1, int minc2,
JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
* for the nearest entry to some cell(s) in the update box. The update box
* is specified by the center coordinates of its first cell. The number of
* candidate colormap entries is returned, and their colormap indexes are
* placed in colorlist[].
* This routine uses Heckbert's "locally sorted search" criterion to select
* the colors that need further consideration.
*/
{
int numcolors = sp->actual_number_of_colors;
int maxc0, maxc1, maxc2;
int centerc0, centerc1, centerc2;
int i, x, ncolors;
int minmaxdist, min_dist, max_dist, tdist;
int mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
/* Compute true coordinates of update box's upper corner and center. *
Actually we compute the coordinates of the center of the upper-corner
* histogram cell, which are the upper bounds of the volume we care
about. * Note that since ">>" rounds down, the "center" values may be
closer to * min than to max; hence comparisons to them must be "<=",
not "<". */
maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
centerc0 = (minc0 + maxc0) >> 1;
maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
centerc1 = (minc1 + maxc1) >> 1;
maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
centerc2 = (minc2 + maxc2) >> 1;
/* For each color in colormap, find: * 1. its minimum squared-distance
to any point in the update box * (zero if color is within update
box); * 2. its maximum squared-distance to any point in the update
box. * Both of these can be found by considering only the corners of
the box. * We save the minimum distance for each color in mindist[]; *
only the smallest maximum distance is of interest. */
minmaxdist = 0x7FFFFFFFL;
for (i = 0; i < numcolors; i++)
{
/* We compute the squared-c0-distance term, then add in the other
two. */
x = sp->colormap[0][i];
if (x < minc0)
{
tdist = (x - minc0) * C0_SCALE;
min_dist = tdist * tdist;
tdist = (x - maxc0) * C0_SCALE;
max_dist = tdist * tdist;
}
else if (x > maxc0)
{
tdist = (x - maxc0) * C0_SCALE;
min_dist = tdist * tdist;
tdist = (x - minc0) * C0_SCALE;
max_dist = tdist * tdist;
}
else
{
/* within cell range so no contribution to min_dist */
min_dist = 0;
if (x <= centerc0)
{
tdist = (x - maxc0) * C0_SCALE;
max_dist = tdist * tdist;
}
else
{
tdist = (x - minc0) * C0_SCALE;
max_dist = tdist * tdist;
}
}
x = sp->colormap[1][i];
if (x < minc1)
{
tdist = (x - minc1) * C1_SCALE;
min_dist += tdist * tdist;
tdist = (x - maxc1) * C1_SCALE;
max_dist += tdist * tdist;
}
else if (x > maxc1)
{
tdist = (x - maxc1) * C1_SCALE;
min_dist += tdist * tdist;
tdist = (x - minc1) * C1_SCALE;
max_dist += tdist * tdist;
}
else
{
/* within cell range so no contribution to min_dist */
if (x <= centerc1)
{
tdist = (x - maxc1) * C1_SCALE;
max_dist += tdist * tdist;
}
else
{
tdist = (x - minc1) * C1_SCALE;
max_dist += tdist * tdist;
}
}
x = sp->colormap[2][i];
if (x < minc2)
{
tdist = (x - minc2) * C2_SCALE;
min_dist += tdist * tdist;
tdist = (x - maxc2) * C2_SCALE;
max_dist += tdist * tdist;
}
else if (x > maxc2)
{
tdist = (x - maxc2) * C2_SCALE;
min_dist += tdist * tdist;
tdist = (x - minc2) * C2_SCALE;
max_dist += tdist * tdist;
}
else
{
/* within cell range so no contribution to min_dist */
if (x <= centerc2)
{
tdist = (x - maxc2) * C2_SCALE;
max_dist += tdist * tdist;
}
else
{
tdist = (x - minc2) * C2_SCALE;
max_dist += tdist * tdist;
}
}
mindist[i] = min_dist; /* save away the results */
if (max_dist < minmaxdist)
minmaxdist = max_dist;
}
/* Now we know that no cell in the update box is more than minmaxdist *
away from some colormap entry. Therefore, only colors that are *
within minmaxdist of some part of the box need be considered. */
ncolors = 0;
for (i = 0; i < numcolors; i++)
{
if (mindist[i] <= minmaxdist)
colorlist[ncolors++] = (JSAMPLE) i;
}
return ncolors;
}
LOCAL(void)
find_best_colors(SPEC *sp, int minc0, int minc1, int minc2,
int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
* given the list of candidate colors prepared by find_nearby_colors.
* Return the indexes of the closest entries in the bestcolor[] array.
* This routine uses Thomas' incremental distance calculation method to
* find the distance from a colormap entry to successive cells in the box.
*/
{
int ic0, ic1, ic2;
int i, icolor;
register int *bptr; /* pointer into bestdist[] array */
JSAMPLE *cptr; /* pointer into bestcolor[] array */
int dist0, dist1; /* initial distance values */
register int dist2; /* current distance in inner loop */
int xx0, xx1; /* distance increments */
register int xx2;
int inc0, inc1, inc2; /* initial values for increments */
/* This array holds the distance to the nearest-so-far color for each
cell */
int bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
/* Initialize best-distance for each cell of the update box */
bptr = bestdist;
for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
*bptr++ = 0x7FFFFFFFL;
/* For each color selected by find_nearby_colors, * compute its distance
to the center of each cell in the box. * If that's less than
best-so-far, update best distance and color number. */
/* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
for (i = 0; i < numcolors; i++)
{
icolor = GETJSAMPLE(colorlist[i]);
/* Compute (square of) distance from minc0/c1/c2 to this color */
inc0 = (minc0 - GETJSAMPLE(sp->colormap[0][icolor])) * C0_SCALE;
dist0 = inc0 * inc0;
inc1 = (minc1 - GETJSAMPLE(sp->colormap[1][icolor])) * C1_SCALE;
dist0 += inc1 * inc1;
inc2 = (minc2 - GETJSAMPLE(sp->colormap[2][icolor])) * C2_SCALE;
dist0 += inc2 * inc2;
/* Form the initial difference increments */
inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
/* Now loop over all cells in box, updating distance per Thomas
method */
bptr = bestdist;
cptr = bestcolor;
xx0 = inc0;
for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--)
{
dist1 = dist0;
xx1 = inc1;
for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--)
{
dist2 = dist1;
xx2 = inc2;
for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--)
{
if (dist2 < *bptr)
{
*bptr = dist2;
*cptr = (JSAMPLE) icolor;
}
dist2 += xx2;
xx2 += 2 * STEP_C2 * STEP_C2;
bptr++;
cptr++;
}
dist1 += xx1;
xx1 += 2 * STEP_C1 * STEP_C1;
}
dist0 += xx0;
xx0 += 2 * STEP_C0 * STEP_C0;
}
}
}
LOCAL(void)
fill_inverse_cmap(SPEC *cquantize, int c0, int c1, int c2)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
hist3d histogram = cquantize->histogram;
int minc0, minc1, minc2; /* lower left corner of update box */
int ic0, ic1, ic2;
register JSAMPLE *cptr; /* pointer into bestcolor[] array */
register histptr cachep; /* pointer into main cache array */
/* This array lists the candidate colormap indexes. */
JSAMPLE colorlist[MAXNUMCOLORS];
int numcolors; /* number of candidate colors */
/* This array holds the actually closest colormap index for each cell. */
JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
/* Convert cell coordinates to update box ID */
c0 >>= BOX_C0_LOG;
c1 >>= BOX_C1_LOG;
c2 >>= BOX_C2_LOG;
/* Compute true coordinates of update box's origin corner. * Actually we
compute the coordinates of the center of the corner * histogram cell,
which are the lower bounds of the volume we care about. */
minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
/* Determine which colormap entries are close enough to be candidates *
for the nearest entry to some cell in the update box. */
numcolors = find_nearby_colors(cquantize, minc0, minc1, minc2, colorlist);
/* Determine the actually nearest colors. */
find_best_colors(cquantize, minc0, minc1, minc2, numcolors, colorlist,
bestcolor);
/* Save the best color numbers (plus 1) in the main cache array */
c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
c1 <<= BOX_C1_LOG;
c2 <<= BOX_C2_LOG;
cptr = bestcolor;
for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++)
{
for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++)
{
cachep = &histogram[c0 + ic0][c1 + ic1][c2];
for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++)
{
*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
}
}
}
}
#define SHIFT_TEMPS int shift_temp;
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
METHODDEF(void)
pass2_fs_dither(SPEC *sp, unsigned char **red,
unsigned char **green, unsigned char **blue,
unsigned short **output_buf,
int width, int num_rows)
/* This version performs Floyd-Steinberg dithering */
{
hist3d histogram = sp->histogram;
register LOCFSERROR cur0, cur1, cur2; /* current error or pixel
value */
LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel
below cur */
LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for
below/prev col */
register FSERRPTR errorptr; /* => fserrors[] at column before current */
unsigned short *outptr; /* => current output pixel */
histptr cachep;
int dir; /* +1 or -1 depending on direction */
int dir3; /* 3*dir, for advancing inptr & errorptr */
int row;
int col;
int *error_limit = sp->error_limiter;
int *colormap0 = sp->colormap[0];
int *colormap1 = sp->colormap[1];
int *colormap2 = sp->colormap[2];
unsigned char *r, *g, *b;
if (sp->im)
{
sp->im->completed = -1;
sp->im->visual_cue(sp->im, "Dithering ...");
}
for (row = 0; row < num_rows; row++)
{
r = red[row];
g = green[row];
b = blue[row];
outptr = output_buf[row];
if (sp->on_odd_row)
{
/* work right to left in this row */
r += width - 1;
g += width - 1;
b += width - 1;
outptr += width - 1;
dir = -1;
dir3 = -3;
errorptr = sp->fserrors + (width + 1) * 3; /* => entry after
last column */
sp->on_odd_row = 0; /* flip for next time */
}
else
{
/* work left to right in this row */
dir = 1;
dir3 = 3;
errorptr = sp->fserrors; /* => entry before first real column */
sp->on_odd_row = 1; /* flip for next time */
}
/* Preset error values: no error propagated to first pixel from left */
cur0 = cur1 = cur2 = 0;
/* and no error propagated to row below yet */
belowerr0 = belowerr1 = belowerr2 = 0;
bpreverr0 = bpreverr1 = bpreverr2 = 0;
for (col = 0; col < width; col++)
{
/* curN holds the error propagated from the previous pixel on the
* current line. Add the error propagated from the previous
line * to form the complete error correction term for this
pixel, and * round the error term (which is expressed * 16) to
an integer. * RIGHT_SHIFT rounds towards minus infinity, so
adding 8 is correct * for either sign of the error value. *
Note: errorptr points to *previous* column's array entry. */
cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4);
cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4);
cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4);
/* Limit the error using transfer function set by
init_error_limit. * See comments with init_error_limit for
rationale. */
cur0 = error_limit[cur0];
cur1 = error_limit[cur1];
cur2 = error_limit[cur2];
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. *
The maximum error is +- MAXJSAMPLE (or less with error
limiting); * this sets the required size of the range_limit
array. */
cur0 += *r;
cur1 += *g;
cur2 += *b;
cur0 = FL_PCCLAMP(cur0);
cur1 = FL_PCCLAMP(cur1);
cur2 = FL_PCCLAMP(cur2);
/* Index into the cache with adjusted pixel value */
cachep = &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
/* If we have not seen this color before, find nearest colormap */
/* entry and update the cache */
if (*cachep == 0)
fill_inverse_cmap(sp, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT);
/* Now emit the colormap index for this cell */
{
register int pixcode = *cachep - 1;
*outptr = (JSAMPLE) pixcode;
/* Compute representation error for this pixel */
cur0 -= colormap0[pixcode];
cur1 -= colormap1[pixcode];
cur2 -= colormap2[pixcode];
}
/* Compute error fractions to be propagated to adjacent pixels. *
Add these into the running sums, and simultaneously shift the
* next-line error sums left by 1 column. */
{
register LOCFSERROR bnexterr, delta;
bnexterr = cur0; /* Process component 0 */
delta = cur0 * 2;
cur0 += delta; /* form error * 3 */
errorptr[0] = (FSERROR) (bpreverr0 + cur0);
cur0 += delta; /* form error * 5 */
bpreverr0 = belowerr0 + cur0;
belowerr0 = bnexterr;
cur0 += delta; /* form error * 7 */
bnexterr = cur1; /* Process component 1 */
delta = cur1 * 2;
cur1 += delta; /* form error * 3 */
errorptr[1] = (FSERROR) (bpreverr1 + cur1);
cur1 += delta; /* form error * 5 */
bpreverr1 = belowerr1 + cur1;
belowerr1 = bnexterr;
cur1 += delta; /* form error * 7 */
bnexterr = cur2; /* Process component 2 */
delta = cur2 * 2;
cur2 += delta; /* form error * 3 */
errorptr[2] = (FSERROR) (bpreverr2 + cur2);
cur2 += delta; /* form error * 5 */
bpreverr2 = belowerr2 + cur2;
belowerr2 = bnexterr;
cur2 += delta; /* form error * 7 */
}
/* At this point curN contains the 7/16 error value to be
propagated * to the next pixel on the current line, and all
the errors for the * next line have been shifted over. We are
therefore ready to move on. */
r += dir;
g += dir;
b += dir;
outptr += dir;
errorptr += dir3; /* advance errorptr to current column */
}
/* Post-loop cleanup: we must unload the final error values into the
* final fserrors[] entry. Note we need not unload belowerrN
because * it is for the dummy column before or after the actual
array. */
errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into
array */
errorptr[1] = (FSERROR) bpreverr1;
errorptr[2] = (FSERROR) bpreverr2;
}
if(sp->im)
{
sp->im->completed = sp->im->total = sp->im->h;
sp->im->visual_cue(sp->im, "Dithering done");
}
}
LOCAL(void)
update_box(SPEC *sp, boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its volume and population */
{
hist3d histogram = sp->histogram;
histptr histp;
int c0, c1, c2;
int c0min, c0max, c1min, c1max, c2min, c2max;
int dist0, dist1, dist2;
long ccount;
c0min = boxp->c0min;
c0max = boxp->c0max;
c1min = boxp->c1min;
c1max = boxp->c1max;
c2min = boxp->c2min;
c2max = boxp->c2max;
if (c0max > c0min)
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++)
{
histp = &histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0)
{
boxp->c0min = c0min = c0;
goto have_c0min;
}
}
have_c0min:
if (c0max > c0min)
for (c0 = c0max; c0 >= c0min; c0--)
for (c1 = c1min; c1 <= c1max; c1++)
{
histp = &histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0)
{
boxp->c0max = c0max = c0;
goto have_c0max;
}
}
have_c0max:
if (c1max > c1min)
for (c1 = c1min; c1 <= c1max; c1++)
for (c0 = c0min; c0 <= c0max; c0++)
{
histp = &histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0)
{
boxp->c1min = c1min = c1;
goto have_c1min;
}
}
have_c1min:
if (c1max > c1min)
for (c1 = c1max; c1 >= c1min; c1--)
for (c0 = c0min; c0 <= c0max; c0++)
{
histp = &histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0)
{
boxp->c1max = c1max = c1;
goto have_c1max;
}
}
have_c1max:
if (c2max > c2min)
for (c2 = c2min; c2 <= c2max; c2++)
for (c0 = c0min; c0 <= c0max; c0++)
{
histp = &histogram[c0][c1min][c2];
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
if (*histp != 0)
{
boxp->c2min = c2min = c2;
goto have_c2min;
}
}
have_c2min:
if (c2max > c2min)
for (c2 = c2max; c2 >= c2min; c2--)
for (c0 = c0min; c0 <= c0max; c0++)
{
histp = &histogram[c0][c1min][c2];
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
if (*histp != 0)
{
boxp->c2max = c2max = c2;
goto have_c2max;
}
}
have_c2max:
/* Update box volume. * We use 2-norm rather than real volume here; this
biases the method * against making long narrow boxes, and it has the
side benefit that * a box is splittable iff norm > 0. * Since the
differences are expressed in histogram-cell units, * we have to shift
back to JSAMPLE units to get consistent distances; * after which, we
scale according to the selected distance scale factors. */
dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
/* Now scan remaining volume of box and compute population */
ccount = 0;
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++)
{
histp = &histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++, histp++)
if (*histp != 0)
{
ccount++;
}
}
boxp->colorcount = ccount;
}
LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist, int numboxes)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
register boxptr boxp;
register int i;
register long maxc = 0;
boxptr which = NULL;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
{
if (boxp->colorcount > maxc && boxp->volume > 0)
{
which = boxp;
maxc = boxp->colorcount;
}
}
return which;
}
LOCAL(boxptr)
find_biggest_volume(boxptr boxlist, int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
register boxptr boxp;
register int i;
register int maxv = 0;
boxptr which = NULL;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
{
if (boxp->volume > maxv)
{
which = boxp;
maxv = boxp->volume;
}
}
return which;
}
LOCAL(int)
median_cut(SPEC *sp, boxptr boxlist, int numboxes,
int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
int n, lb;
int c0, c1, c2, cmax;
register boxptr b1, b2;
while (numboxes < desired_colors)
{
/* Select box to split. * Current algorithm: by population for first
half, then by volume. */
if (numboxes * 2 <= desired_colors)
{
b1 = find_biggest_color_pop(boxlist, numboxes);
}
else
{
b1 = find_biggest_volume(boxlist, numboxes);
}
if (b1 == NULL) /* no splittable boxes left! */
break;
b2 = &boxlist[numboxes]; /* where new box will go */
/* Copy the color bounds to the new box. */
b2->c0max = b1->c0max;
b2->c1max = b1->c1max;
b2->c2max = b1->c2max;
b2->c0min = b1->c0min;
b2->c1min = b1->c1min;
b2->c2min = b1->c2min;
/* Choose which axis to split the box on. * Current algorithm:
longest scaled axis. * See notes in update_box about scaling
distances. */
c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
/* We want to break any ties in favor of green, then red, blue last.
* This code does the right thing for R,G,B or B,G,R color orders
only. */
#if RGB_RED == 0
cmax = c1;
n = 1;
if (c0 > cmax)
{
cmax = c0;
n = 0;
}
if (c2 > cmax)
{
n = 2;
}
#else
cmax = c1;
n = 1;
if (c2 > cmax)
{
cmax = c2;
n = 2;
}
if (c0 > cmax)
{
n = 0;
}
#endif
/* Choose split point along selected axis, and update box bounds. *
Current algorithm: split at halfway point. * (Since the box has
been shrunk to minimum volume, * any split will produce two
nonempty subboxes.) * Note that lb value is max for lower box, so
must be < old max. */
switch (n)
{
case 0:
lb = (b1->c0max + b1->c0min) / 2;
b1->c0max = lb;
b2->c0min = lb + 1;
break;
case 1:
lb = (b1->c1max + b1->c1min) / 2;
b1->c1max = lb;
b2->c1min = lb + 1;
break;
case 2:
lb = (b1->c2max + b1->c2min) / 2;
b1->c2max = lb;
b2->c2min = lb + 1;
break;
}
/* Update stats for boxes */
update_box(sp, b1);
update_box(sp, b2);
numboxes++;
}
return numboxes;
}
LOCAL(void)
compute_color(SPEC *sp, boxptr boxp, int icolor)
/* Compute representative color for a box, put it in colormap[icolor] */
{
/* Current algorithm: mean weighted by pixels (not colors) */
/* Note it is important to get the rounding correct! */
hist3d histogram = sp->histogram;
histptr histp;
int c0, c1, c2;
int c0min, c0max, c1min, c1max, c2min, c2max;
long count;
long total = 0;
long c0total = 0;
long c1total = 0;
long c2total = 0;
c0min = boxp->c0min;
c0max = boxp->c0max;
c1min = boxp->c1min;
c1max = boxp->c1max;
c2min = boxp->c2min;
c2max = boxp->c2max;
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++)
{
histp = &histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
{
if ((count = *histp++) != 0)
{
total += count;
c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
}
}
}
sp->colormap[0][icolor] = (JSAMPLE) ((c0total + (total >> 1)) / total);
sp->colormap[1][icolor] = (JSAMPLE) ((c1total + (total >> 1)) / total);
sp->colormap[2][icolor] = (JSAMPLE) ((c2total + (total >> 1)) / total);
}
/* Master routine for color selection */
LOCAL(void)
select_colors(SPEC *sp, int desired_colors)
{
boxptr boxlist;
int numboxes;
int i;
if (sp->im)
sp->im->visual_cue(sp->im, "Selecting Colors ...");
/* Allocate workspace for box list */
boxlist = fl_malloc(desired_colors * sizeof(box));
/* Initialize one box containing whole space */
numboxes = 1;
boxlist[0].c0min = 0;
boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
boxlist[0].c1min = 0;
boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
boxlist[0].c2min = 0;
boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
/* Shrink it to actually-used volume and set its statistics */
update_box(sp, &boxlist[0]);
/* Perform median-cut to produce final box list */
numboxes = median_cut(sp, boxlist, numboxes, desired_colors);
/* Compute the representative color for each box, fill colormap */
for (i = 0; i < numboxes; i++)
compute_color(sp, &boxlist[i], i);
sp->actual_number_of_colors = numboxes;
fl_free(boxlist);
}
/* get histogram */
METHODDEF(void)
prescan_quantize(SPEC *sp, unsigned char **r, unsigned char **g,
unsigned char **b, int width, int num_rows)
{
register histptr histp;
register hist3d histogram = sp->histogram;
int row, col;
if (sp->im)
{
sp->im->completed = 0;
sp->im->visual_cue(sp->im, "Getting Histogram ...");
}
for (row = 0; row < num_rows; row++)
{
for (col = width; --col >= 0;)
{
/* get pixel value and index into the histogram */
histp = &histogram[r[row][col] >> C0_SHIFT]
[g[row][col] >> C1_SHIFT]
[b[row][col] >> C2_SHIFT];
/* increment, check for overflow and undo increment if so. */
if (++(*histp) <= 0)
(*histp)--;
}
}
}
/*
* Initialize the error-limiting transfer function (lookup table).
* The raw F-S error computation can potentially compute error values of up to
* +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
* much less, otherwise obviously wrong pixels will be created. (Typical
* effects include weird fringes at color-area boundaries, isolated bright
* pixels in a dark area, etc.) The standard advice for avoiding this problem
* is to ensure that the "corners" of the color cube are allocated as output
* colors; then repeated errors in the same direction cannot cause cascading
* error buildup. However, that only prevents the error from getting
* completely out of hand; Aaron Giles reports that error limiting improves
* the results even with corner colors allocated.
* A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
* well, but the smoother transfer function used below is even better. Thanks
* to Aaron Giles for this idea.
*/
LOCAL(void)
init_error_limit(SPEC *sp)
/* Allocate and fill in the error_limiter table */
{
int *table;
int in, out;
table = fl_malloc((MAXJSAMPLE * 2 + 1) * sizeof(int));
table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
sp->error_limiter = table;
#define STEPSIZE ((MAXJSAMPLE+1)/16)
/* Map errors 1:1 up to +- MAXJSAMPLE/16 */
out = 0;
for (in = 0; in < STEPSIZE; in++, out++)
{
table[in] = out;
table[-in] = -out;
}
/* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1)
{
table[in] = out;
table[-in] = -out;
}
/* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
for (; in <= MAXJSAMPLE; in++)
{
table[in] = out;
table[-in] = -out;
}
#undef STEPSIZE
}
|