File: image_jquant.c

package info (click to toggle)
libforms1 1.0-8
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 6,648 kB
  • ctags: 14,351
  • sloc: ansic: 90,441; makefile: 9,902; sh: 8
file content (1239 lines) | stat: -rw-r--r-- 35,804 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
/*
 *
 *  This file is part of the XForms library package.
 *
 * XForms is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1, or
 * (at your option) any later version.
 *
 * XForms is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with XForms; see the file COPYING.  If not, write to
 * the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 *
 */


/*
 * $Id: image_jquant.c,v 1.0 2002/05/08 05:16:30 zhao Release $
 *
 * Copyright (C) 1998  T.C. Zhao
 *
 * The 2-pass quantizer from the JPEG distribution by the
 * Independent JPEG group. Except for minor interface changes, the code
 * here is almost verbatim copy of the IJG's code, which
 * has the following copyright:
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 *  This file is part of the XForms library package.
 *
 */

#include "forms.h"
#include "flimage.h"
#include "flimage_int.h"

void
fl_select_mediancut_quantizer(void)
{
    flimage_quantize_rgb = fl_j2pass_quantize_rgb;
    flimage_quantize_packed = fl_j2pass_quantize_packed;
}


#define R_SCALE 2		/* scale R distances by this much */
#define G_SCALE 3		/* scale G distances by this much */
#define B_SCALE 1		/* and B by this much */

#define C0_SCALE  R_SCALE
#define C1_SCALE  G_SCALE
#define C2_SCALE  B_SCALE

#define LOCAL(a)           static a
#define METHODDEF(a)       static a

#define BITS_IN_JSAMPLE   FL_PCBITS
#define MAXJSAMPLE   ((1<<BITS_IN_JSAMPLE)-1)

typedef unsigned char JSAMPLE;
#define GETJSAMPLE(a)        ((a)&0xff)

#define MAXNUMCOLORS  (MAXJSAMPLE+1)	/* maximum size of colormap */

/* These will do the right thing for either R,G,B or B,G,R color order,
 * but you may not like the results for other color orders.
 */
#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
#define HIST_C1_BITS  6		/* bits of precision in G histogram */
#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */

/* Number of elements along histogram axes. */
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)

/* These are the amounts to shift an input value to get a histogram index. */
#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)

typedef u_short histcell;	/* histogram cell; prefer an unsigned type */
typedef histcell *histptr;	/* for pointers to histogram cells */
typedef histcell hist1d[HIST_C2_ELEMS];		/* typedefs for the array */
typedef hist1d *hist2d;		/* type for the 2nd-level pointers */
typedef hist2d *hist3d;		/* type for top-level pointer */

#if BITS_IN_JSAMPLE == 8
typedef short FSERROR;		/* 16 bits should be enough */
typedef int LOCFSERROR;		/* use 'int' for calculation temps */
#else
typedef int FSERROR;		/* may need more than 16 bits */
typedef int LOCFSERROR;		/* be sure calculation temps are big enough */
#endif

typedef FSERROR *FSERRPTR;	/* pointer to error array (in FAR storage!) */


typedef struct
{
    int c0min, c0max;
    int c1min, c1max;
    int c2min, c2max;
    int volume;
    long colorcount;
}
box;

typedef box *boxptr;


typedef struct
{
    hist3d histogram;		/* pointer to the 3D histogram array */
    FSERRPTR fserrors;		/* accumulated-errors array */
    int *error_limiter;		/* table for clamping the applied error */
    int on_odd_row;		/* flag to remember which row we are on */
    int *colormap[3];		/* selected colormap */
    int actual_number_of_colors;	/* number of selected colors */
    FL_IMAGE *im;		/* for progress monitor only          */
}
SPEC;


static void init_error_limit(SPEC *);
static void prescan_quantize(SPEC *, unsigned char **, unsigned char **,
			     unsigned char **, int, int);


static void select_colors(SPEC *sp, int desired_colors);
static void pass2_fs_dither(SPEC *, unsigned char **,
			    unsigned char **, unsigned char **,
			    unsigned short **, int, int);

static void
cleanup_spec(SPEC *sp)

{
    int i;

    if (sp->fserrors)
	fl_free(sp->fserrors);

    if (sp->error_limiter)
	fl_free(sp->error_limiter - MAXJSAMPLE);

    sp->error_limiter = 0;
    sp->fserrors = 0;

    if (sp->histogram)
    {
	for (i = 0; i < HIST_C0_ELEMS; i++)
	{
	    if (sp->histogram[i])
		fl_free(sp->histogram[i]);
	    sp->histogram[i] = 0;
	}
    }

    fl_free(sp->histogram);
    sp->histogram = 0;

    fl_free(sp);
}

static SPEC *
alloc_spec(int w, int h, int *rlut, int *glut, int *blut)
{
    int fs_size = (w + 2) * (3 * sizeof(FSERROR)), i;
    SPEC *sp = fl_calloc(1, sizeof(*sp));
    int err = !sp;

    if (!err)
	init_error_limit(sp);

    err = err || !(sp->fserrors = fl_calloc(1, fs_size));
    err = err || !(sp->histogram = fl_calloc(1, HIST_C0_ELEMS * sizeof(hist2d)));
    for (i = 0; !err && i < HIST_C0_ELEMS; i++)
	err = !(sp->histogram[i] = fl_calloc(1,
			 HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell)));

    if (err)
    {
	cleanup_spec(sp);
	sp = 0;
    }
    else
    {
	sp->colormap[0] = rlut;
	sp->colormap[1] = glut;
	sp->colormap[2] = blut;
    }
    return sp;
}


int
fl_j2pass_quantize_rgb(unsigned char **red,
		       unsigned char **green,
		       unsigned char **blue, int w, int h,
		       int max_color,
		       unsigned short **ci, int *actual_color,
		       int *red_lut,
		       int *green_lut,
		       int *blue_lut, FL_IMAGE * im)
{
    SPEC *sp = alloc_spec(w, h, red_lut, green_lut, blue_lut);
    int i;

    if (!sp)
    {
	*actual_color = 0;
	if (im)
	    im->error_message(im, "Failed to allocate working memory");
	return -1;
    }

    if (*actual_color > 256)
	*actual_color = 256;

    sp->im = im;

    /* get histogram  */
    prescan_quantize(sp, red, green, blue, w, h);

    select_colors(sp, max_color);

    /* re-init histogram for inverse lookup */
    for (i = 0; i < HIST_C0_ELEMS; i++)
	memset(sp->histogram[i], 0,
	       HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));

    sp->on_odd_row = 0;
    pass2_fs_dither(sp, red, green, blue, ci, w, h);
    *actual_color = sp->actual_number_of_colors;
    cleanup_spec(sp);

    if (im)
    {
	im->completed = im->h;
	im->visual_cue(im, "Quantization Done");
    }

    return 0;
}

int
fl_j2pass_quantize_packed(unsigned int **packed,
			  int w, int h, int max_color,
			  unsigned short **ci, int *actual_color,
			  int *red_lut,
			  int *green_lut,
			  int *blue_lut, FL_IMAGE * im)
{

    SPEC *sp = alloc_spec(w, h, red_lut, green_lut, blue_lut);
    unsigned char **red = 0, **green = 0, **blue = 0;
    int i, err;

    if (!sp)
    {
	if (im)
	    im->error_message(im, "Quantize: can't allocate memory");
	*actual_color = 0;
	return -1;
    }

    sp->im = im;

    /* we can process the image one piece a time to avoid the heavy memory
       usage, but packed is not that common. For now, do it in one chunk */

    err = !(red = fl_get_matrix(h, w, sizeof(**red)));
    err = err || !(green = fl_get_matrix(h, w, sizeof(**red)));
    err = err || !(blue = fl_get_matrix(h, w, sizeof(**red)));

    if (err)
    {
	const char *s = "Quantize: can't allocate memory";
	if (im)
	    im->error_message(im, s);
	else
	    fprintf(stderr, "%s\n", s);

	fl_free_matrix(red);
	fl_free_matrix(green);
	fl_free_matrix(blue);
    }

    for (i = w * h; --i >= 0;)
	FL_UNPACK(packed[0][i], red[0][i], green[0][i], blue[0][i]);


    /* get histogram  */
    prescan_quantize(sp, red, green, blue, w, h);

    select_colors(sp, max_color);

    /* re-init histogram for inverse lookup */
    for (i = 0; i < HIST_C0_ELEMS; i++)
	memset(sp->histogram[i], 0,
	       HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));

    sp->on_odd_row = 0;
    pass2_fs_dither(sp, red, green, blue, ci, w, h);
    *actual_color = sp->actual_number_of_colors;

    fl_free_matrix(red);
    fl_free_matrix(green);
    fl_free_matrix(blue);
    cleanup_spec(sp);

    if (im)
    {
	im->completed = im->h;
	im->visual_cue(im, "Quantization Done");
    }

    return 0;
}


/* log2(histogram cells in update box) for each axis; this can be adjusted */
#define BOX_C0_LOG  (HIST_C0_BITS-3)
#define BOX_C1_LOG  (HIST_C1_BITS-3)
#define BOX_C2_LOG  (HIST_C2_BITS-3)

#define BOX_C0_ELEMS  (1<<BOX_C0_LOG)	/* # of hist cells in update box */
#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)

#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)


LOCAL(int)
find_nearby_colors(SPEC *sp, int minc0, int minc1, int minc2,
		   JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
 * for the nearest entry to some cell(s) in the update box.  The update box
 * is specified by the center coordinates of its first cell.  The number of
 * candidate colormap entries is returned, and their colormap indexes are
 * placed in colorlist[].
 * This routine uses Heckbert's "locally sorted search" criterion to select
 * the colors that need further consideration.
 */
{
    int numcolors = sp->actual_number_of_colors;
    int maxc0, maxc1, maxc2;
    int centerc0, centerc1, centerc2;
    int i, x, ncolors;
    int minmaxdist, min_dist, max_dist, tdist;
    int mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */

    /* Compute true coordinates of update box's upper corner and center. *
       Actually we compute the coordinates of the center of the upper-corner
       * histogram cell, which are the upper bounds of the volume we care
       about. * Note that since ">>" rounds down, the "center" values may be
       closer to * min than to max; hence comparisons to them must be "<=",
       not "<". */
    maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
    centerc0 = (minc0 + maxc0) >> 1;
    maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
    centerc1 = (minc1 + maxc1) >> 1;
    maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
    centerc2 = (minc2 + maxc2) >> 1;

    /* For each color in colormap, find: *  1. its minimum squared-distance
       to any point in the update box *     (zero if color is within update
       box); *  2. its maximum squared-distance to any point in the update
       box. * Both of these can be found by considering only the corners of
       the box. * We save the minimum distance for each color in mindist[]; * 








       only the smallest maximum distance is of interest. */
    minmaxdist = 0x7FFFFFFFL;

    for (i = 0; i < numcolors; i++)
    {
	/* We compute the squared-c0-distance term, then add in the other
	   two. */
	x = sp->colormap[0][i];
	if (x < minc0)
	{
	    tdist = (x - minc0) * C0_SCALE;
	    min_dist = tdist * tdist;
	    tdist = (x - maxc0) * C0_SCALE;
	    max_dist = tdist * tdist;
	}
	else if (x > maxc0)
	{
	    tdist = (x - maxc0) * C0_SCALE;
	    min_dist = tdist * tdist;
	    tdist = (x - minc0) * C0_SCALE;
	    max_dist = tdist * tdist;
	}
	else
	{
	    /* within cell range so no contribution to min_dist */
	    min_dist = 0;
	    if (x <= centerc0)
	    {
		tdist = (x - maxc0) * C0_SCALE;
		max_dist = tdist * tdist;
	    }
	    else
	    {
		tdist = (x - minc0) * C0_SCALE;
		max_dist = tdist * tdist;
	    }
	}

	x = sp->colormap[1][i];
	if (x < minc1)
	{
	    tdist = (x - minc1) * C1_SCALE;
	    min_dist += tdist * tdist;
	    tdist = (x - maxc1) * C1_SCALE;
	    max_dist += tdist * tdist;
	}
	else if (x > maxc1)
	{
	    tdist = (x - maxc1) * C1_SCALE;
	    min_dist += tdist * tdist;
	    tdist = (x - minc1) * C1_SCALE;
	    max_dist += tdist * tdist;
	}
	else
	{
	    /* within cell range so no contribution to min_dist */
	    if (x <= centerc1)
	    {
		tdist = (x - maxc1) * C1_SCALE;
		max_dist += tdist * tdist;
	    }
	    else
	    {
		tdist = (x - minc1) * C1_SCALE;
		max_dist += tdist * tdist;
	    }
	}

	x = sp->colormap[2][i];
	if (x < minc2)
	{
	    tdist = (x - minc2) * C2_SCALE;
	    min_dist += tdist * tdist;
	    tdist = (x - maxc2) * C2_SCALE;
	    max_dist += tdist * tdist;
	}
	else if (x > maxc2)
	{
	    tdist = (x - maxc2) * C2_SCALE;
	    min_dist += tdist * tdist;
	    tdist = (x - minc2) * C2_SCALE;
	    max_dist += tdist * tdist;
	}
	else
	{
	    /* within cell range so no contribution to min_dist */
	    if (x <= centerc2)
	    {
		tdist = (x - maxc2) * C2_SCALE;
		max_dist += tdist * tdist;
	    }
	    else
	    {
		tdist = (x - minc2) * C2_SCALE;
		max_dist += tdist * tdist;
	    }
	}

	mindist[i] = min_dist;	/* save away the results */
	if (max_dist < minmaxdist)
	    minmaxdist = max_dist;
    }

    /* Now we know that no cell in the update box is more than minmaxdist *
       away from some colormap entry.  Therefore, only colors that are *
       within minmaxdist of some part of the box need be considered. */
    ncolors = 0;
    for (i = 0; i < numcolors; i++)
    {
	if (mindist[i] <= minmaxdist)
	    colorlist[ncolors++] = (JSAMPLE) i;
    }
    return ncolors;
}


LOCAL(void)
find_best_colors(SPEC *sp, int minc0, int minc1, int minc2,
		 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
 * given the list of candidate colors prepared by find_nearby_colors.
 * Return the indexes of the closest entries in the bestcolor[] array.
 * This routine uses Thomas' incremental distance calculation method to
 * find the distance from a colormap entry to successive cells in the box.
 */
{
    int ic0, ic1, ic2;
    int i, icolor;
    register int *bptr;		/* pointer into bestdist[] array */
    JSAMPLE *cptr;		/* pointer into bestcolor[] array */
    int dist0, dist1;		/* initial distance values */
    register int dist2;		/* current distance in inner loop */
    int xx0, xx1;		/* distance increments */
    register int xx2;
    int inc0, inc1, inc2;	/* initial values for increments */
    /* This array holds the distance to the nearest-so-far color for each
       cell */
    int bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];

    /* Initialize best-distance for each cell of the update box */
    bptr = bestdist;
    for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
	*bptr++ = 0x7FFFFFFFL;

    /* For each color selected by find_nearby_colors, * compute its distance
       to the center of each cell in the box. * If that's less than
       best-so-far, update best distance and color number. */

    /* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)

    for (i = 0; i < numcolors; i++)
    {
	icolor = GETJSAMPLE(colorlist[i]);
	/* Compute (square of) distance from minc0/c1/c2 to this color */
	inc0 = (minc0 - GETJSAMPLE(sp->colormap[0][icolor])) * C0_SCALE;
	dist0 = inc0 * inc0;
	inc1 = (minc1 - GETJSAMPLE(sp->colormap[1][icolor])) * C1_SCALE;
	dist0 += inc1 * inc1;
	inc2 = (minc2 - GETJSAMPLE(sp->colormap[2][icolor])) * C2_SCALE;
	dist0 += inc2 * inc2;
	/* Form the initial difference increments */
	inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
	inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
	inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
	/* Now loop over all cells in box, updating distance per Thomas
	   method */
	bptr = bestdist;
	cptr = bestcolor;
	xx0 = inc0;
	for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--)
	{
	    dist1 = dist0;
	    xx1 = inc1;
	    for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--)
	    {
		dist2 = dist1;
		xx2 = inc2;
		for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--)
		{
		    if (dist2 < *bptr)
		    {
			*bptr = dist2;
			*cptr = (JSAMPLE) icolor;
		    }
		    dist2 += xx2;
		    xx2 += 2 * STEP_C2 * STEP_C2;
		    bptr++;
		    cptr++;
		}
		dist1 += xx1;
		xx1 += 2 * STEP_C1 * STEP_C1;
	    }
	    dist0 += xx0;
	    xx0 += 2 * STEP_C0 * STEP_C0;
	}
    }
}


LOCAL(void)
fill_inverse_cmap(SPEC *cquantize, int c0, int c1, int c2)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
    hist3d histogram = cquantize->histogram;
    int minc0, minc1, minc2;	/* lower left corner of update box */
    int ic0, ic1, ic2;
    register JSAMPLE *cptr;	/* pointer into bestcolor[] array */
    register histptr cachep;	/* pointer into main cache array */
    /* This array lists the candidate colormap indexes. */
    JSAMPLE colorlist[MAXNUMCOLORS];
    int numcolors;		/* number of candidate colors */
    /* This array holds the actually closest colormap index for each cell. */
    JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];

    /* Convert cell coordinates to update box ID */
    c0 >>= BOX_C0_LOG;
    c1 >>= BOX_C1_LOG;
    c2 >>= BOX_C2_LOG;

    /* Compute true coordinates of update box's origin corner. * Actually we
       compute the coordinates of the center of the corner * histogram cell,
       which are the lower bounds of the volume we care about. */
    minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
    minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
    minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);

    /* Determine which colormap entries are close enough to be candidates *
       for the nearest entry to some cell in the update box. */
    numcolors = find_nearby_colors(cquantize, minc0, minc1, minc2, colorlist);

    /* Determine the actually nearest colors. */
    find_best_colors(cquantize, minc0, minc1, minc2, numcolors, colorlist,
		     bestcolor);

    /* Save the best color numbers (plus 1) in the main cache array */
    c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
    c1 <<= BOX_C1_LOG;
    c2 <<= BOX_C2_LOG;
    cptr = bestcolor;
    for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++)
    {
	for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++)
	{
	    cachep = &histogram[c0 + ic0][c1 + ic1][c2];
	    for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++)
	    {
		*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
	    }
	}
    }
}

#define SHIFT_TEMPS   int shift_temp;
#define RIGHT_SHIFT(x,shft)   ((x) >> (shft))

METHODDEF(void)
pass2_fs_dither(SPEC *sp, unsigned char **red,
		unsigned char **green, unsigned char **blue,
		unsigned short **output_buf,
		int width, int num_rows)
/* This version performs Floyd-Steinberg dithering */
{
    hist3d histogram = sp->histogram;
    register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel
						   value */
    LOCFSERROR belowerr0, belowerr1, belowerr2;		/* error for pixel
							   below cur */
    LOCFSERROR bpreverr0, bpreverr1, bpreverr2;		/* error for
							   below/prev col */
    register FSERRPTR errorptr;	/* => fserrors[] at column before current */
    unsigned short *outptr;	/* => current output pixel */
    histptr cachep;
    int dir;			/* +1 or -1 depending on direction */
    int dir3;			/* 3*dir, for advancing inptr & errorptr */
    int row;
    int col;
    int *error_limit = sp->error_limiter;
    int *colormap0 = sp->colormap[0];
    int *colormap1 = sp->colormap[1];
    int *colormap2 = sp->colormap[2];
    unsigned char *r, *g, *b;

    if (sp->im)
    {
        sp->im->completed = -1;
	sp->im->visual_cue(sp->im, "Dithering ...");
    }

    for (row = 0; row < num_rows; row++)
    {
	r = red[row];
	g = green[row];
	b = blue[row];
	outptr = output_buf[row];
	if (sp->on_odd_row)
	{
	    /* work right to left in this row */
	    r += width - 1;
	    g += width - 1;
	    b += width - 1;
	    outptr += width - 1;
	    dir = -1;
	    dir3 = -3;
	    errorptr = sp->fserrors + (width + 1) * 3;	/* => entry after
							   last column */
	    sp->on_odd_row = 0;	/* flip for next time */
	}
	else
	{
	    /* work left to right in this row */
	    dir = 1;
	    dir3 = 3;
	    errorptr = sp->fserrors;	/* => entry before first real column */
	    sp->on_odd_row = 1;	/* flip for next time */
	}
	/* Preset error values: no error propagated to first pixel from left */
	cur0 = cur1 = cur2 = 0;
	/* and no error propagated to row below yet */
	belowerr0 = belowerr1 = belowerr2 = 0;
	bpreverr0 = bpreverr1 = bpreverr2 = 0;

	for (col = 0; col < width; col++)
	{
	    /* curN holds the error propagated from the previous pixel on the
	       * current line.  Add the error propagated from the previous
	       line * to form the complete error correction term for this
	       pixel, and * round the error term (which is expressed * 16) to
	       an integer. * RIGHT_SHIFT rounds towards minus infinity, so
	       adding 8 is correct * for either sign of the error value. *
	       Note: errorptr points to *previous* column's array entry. */
	    cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4);
	    cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4);
	    cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4);
	    /* Limit the error using transfer function set by
	       init_error_limit. * See comments with init_error_limit for
	       rationale. */
	    cur0 = error_limit[cur0];
	    cur1 = error_limit[cur1];
	    cur2 = error_limit[cur2];
	    /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. *
	       The maximum error is +- MAXJSAMPLE (or less with error
	       limiting); * this sets the required size of the range_limit
	       array. */
	    cur0 += *r;
	    cur1 += *g;
	    cur2 += *b;


	    cur0 = FL_PCCLAMP(cur0);
	    cur1 = FL_PCCLAMP(cur1);
	    cur2 = FL_PCCLAMP(cur2);

	    /* Index into the cache with adjusted pixel value */
	    cachep = &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
	    /* If we have not seen this color before, find nearest colormap */
	    /* entry and update the cache */
	    if (*cachep == 0)
		fill_inverse_cmap(sp, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT);
	    /* Now emit the colormap index for this cell */
	    {
		register int pixcode = *cachep - 1;
		*outptr = (JSAMPLE) pixcode;

		/* Compute representation error for this pixel */
		cur0 -= colormap0[pixcode];
		cur1 -= colormap1[pixcode];
		cur2 -= colormap2[pixcode];
	    }

	    /* Compute error fractions to be propagated to adjacent pixels. * 
	       Add these into the running sums, and simultaneously shift the
	       * next-line error sums left by 1 column. */
	    {
		register LOCFSERROR bnexterr, delta;

		bnexterr = cur0;	/* Process component 0 */
		delta = cur0 * 2;
		cur0 += delta;	/* form error * 3 */
		errorptr[0] = (FSERROR) (bpreverr0 + cur0);
		cur0 += delta;	/* form error * 5 */
		bpreverr0 = belowerr0 + cur0;
		belowerr0 = bnexterr;
		cur0 += delta;	/* form error * 7 */
		bnexterr = cur1;	/* Process component 1 */
		delta = cur1 * 2;
		cur1 += delta;	/* form error * 3 */
		errorptr[1] = (FSERROR) (bpreverr1 + cur1);
		cur1 += delta;	/* form error * 5 */
		bpreverr1 = belowerr1 + cur1;
		belowerr1 = bnexterr;
		cur1 += delta;	/* form error * 7 */
		bnexterr = cur2;	/* Process component 2 */
		delta = cur2 * 2;
		cur2 += delta;	/* form error * 3 */
		errorptr[2] = (FSERROR) (bpreverr2 + cur2);
		cur2 += delta;	/* form error * 5 */
		bpreverr2 = belowerr2 + cur2;
		belowerr2 = bnexterr;
		cur2 += delta;	/* form error * 7 */
	    }

	    /* At this point curN contains the 7/16 error value to be
	       propagated * to the next pixel on the current line, and all
	       the errors for the * next line have been shifted over.  We are 
	       therefore ready to move on. */
	    r += dir;
	    g += dir;
	    b += dir;
	    outptr += dir;
	    errorptr += dir3;	/* advance errorptr to current column */
	}

	/* Post-loop cleanup: we must unload the final error values into the
	   * final fserrors[] entry.  Note we need not unload belowerrN
	   because * it is for the dummy column before or after the actual
	   array. */
	errorptr[0] = (FSERROR) bpreverr0;	/* unload prev errs into
						   array */
	errorptr[1] = (FSERROR) bpreverr1;
	errorptr[2] = (FSERROR) bpreverr2;
    }

    if(sp->im)
    {
       sp->im->completed = sp->im->total = sp->im->h;
       sp->im->visual_cue(sp->im, "Dithering done");
    }
}

LOCAL(void)
update_box(SPEC *sp, boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its volume and population */
{
    hist3d histogram = sp->histogram;
    histptr histp;
    int c0, c1, c2;
    int c0min, c0max, c1min, c1max, c2min, c2max;
    int dist0, dist1, dist2;
    long ccount;

    c0min = boxp->c0min;
    c0max = boxp->c0max;
    c1min = boxp->c1min;
    c1max = boxp->c1max;
    c2min = boxp->c2min;
    c2max = boxp->c2max;

    if (c0max > c0min)
	for (c0 = c0min; c0 <= c0max; c0++)
	    for (c1 = c1min; c1 <= c1max; c1++)
	    {
		histp = &histogram[c0][c1][c2min];
		for (c2 = c2min; c2 <= c2max; c2++)
		    if (*histp++ != 0)
		    {
			boxp->c0min = c0min = c0;
			goto have_c0min;
		    }
	    }
  have_c0min:
    if (c0max > c0min)
	for (c0 = c0max; c0 >= c0min; c0--)
	    for (c1 = c1min; c1 <= c1max; c1++)
	    {
		histp = &histogram[c0][c1][c2min];
		for (c2 = c2min; c2 <= c2max; c2++)
		    if (*histp++ != 0)
		    {
			boxp->c0max = c0max = c0;
			goto have_c0max;
		    }
	    }
  have_c0max:
    if (c1max > c1min)
	for (c1 = c1min; c1 <= c1max; c1++)
	    for (c0 = c0min; c0 <= c0max; c0++)
	    {
		histp = &histogram[c0][c1][c2min];
		for (c2 = c2min; c2 <= c2max; c2++)
		    if (*histp++ != 0)
		    {
			boxp->c1min = c1min = c1;
			goto have_c1min;
		    }
	    }
  have_c1min:
    if (c1max > c1min)
	for (c1 = c1max; c1 >= c1min; c1--)
	    for (c0 = c0min; c0 <= c0max; c0++)
	    {
		histp = &histogram[c0][c1][c2min];
		for (c2 = c2min; c2 <= c2max; c2++)
		    if (*histp++ != 0)
		    {
			boxp->c1max = c1max = c1;
			goto have_c1max;
		    }
	    }
  have_c1max:
    if (c2max > c2min)
	for (c2 = c2min; c2 <= c2max; c2++)
	    for (c0 = c0min; c0 <= c0max; c0++)
	    {
		histp = &histogram[c0][c1min][c2];
		for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
		    if (*histp != 0)
		    {
			boxp->c2min = c2min = c2;
			goto have_c2min;
		    }
	    }
  have_c2min:
    if (c2max > c2min)
	for (c2 = c2max; c2 >= c2min; c2--)
	    for (c0 = c0min; c0 <= c0max; c0++)
	    {
		histp = &histogram[c0][c1min][c2];
		for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
		    if (*histp != 0)
		    {
			boxp->c2max = c2max = c2;
			goto have_c2max;
		    }
	    }
  have_c2max:

    /* Update box volume. * We use 2-norm rather than real volume here; this
       biases the method * against making long narrow boxes, and it has the
       side benefit that * a box is splittable iff norm > 0. * Since the
       differences are expressed in histogram-cell units, * we have to shift
       back to JSAMPLE units to get consistent distances; * after which, we
       scale according to the selected distance scale factors. */
    dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
    dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
    dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
    boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;

    /* Now scan remaining volume of box and compute population */
    ccount = 0;
    for (c0 = c0min; c0 <= c0max; c0++)
	for (c1 = c1min; c1 <= c1max; c1++)
	{
	    histp = &histogram[c0][c1][c2min];
	    for (c2 = c2min; c2 <= c2max; c2++, histp++)
		if (*histp != 0)
		{
		    ccount++;
		}
	}
    boxp->colorcount = ccount;
}

LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist, int numboxes)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
    register boxptr boxp;
    register int i;
    register long maxc = 0;
    boxptr which = NULL;

    for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
    {
	if (boxp->colorcount > maxc && boxp->volume > 0)
	{
	    which = boxp;
	    maxc = boxp->colorcount;
	}
    }
    return which;
}


LOCAL(boxptr)
find_biggest_volume(boxptr boxlist, int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
    register boxptr boxp;
    register int i;
    register int maxv = 0;
    boxptr which = NULL;

    for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
    {
	if (boxp->volume > maxv)
	{
	    which = boxp;
	    maxv = boxp->volume;
	}
    }
    return which;
}

LOCAL(int)
median_cut(SPEC *sp, boxptr boxlist, int numboxes,
	   int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
    int n, lb;
    int c0, c1, c2, cmax;
    register boxptr b1, b2;

    while (numboxes < desired_colors)
    {
	/* Select box to split. * Current algorithm: by population for first
	   half, then by volume. */
	if (numboxes * 2 <= desired_colors)
	{
	    b1 = find_biggest_color_pop(boxlist, numboxes);
	}
	else
	{
	    b1 = find_biggest_volume(boxlist, numboxes);
	}
	if (b1 == NULL)		/* no splittable boxes left! */
	    break;
	b2 = &boxlist[numboxes];	/* where new box will go */
	/* Copy the color bounds to the new box. */
	b2->c0max = b1->c0max;
	b2->c1max = b1->c1max;
	b2->c2max = b1->c2max;
	b2->c0min = b1->c0min;
	b2->c1min = b1->c1min;
	b2->c2min = b1->c2min;
	/* Choose which axis to split the box on. * Current algorithm:
	   longest scaled axis. * See notes in update_box about scaling
	   distances. */
	c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
	c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
	c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
	/* We want to break any ties in favor of green, then red, blue last.
	   * This code does the right thing for R,G,B or B,G,R color orders
	   only. */
#if RGB_RED == 0
	cmax = c1;
	n = 1;
	if (c0 > cmax)
	{
	    cmax = c0;
	    n = 0;
	}
	if (c2 > cmax)
	{
	    n = 2;
	}
#else
	cmax = c1;
	n = 1;
	if (c2 > cmax)
	{
	    cmax = c2;
	    n = 2;
	}
	if (c0 > cmax)
	{
	    n = 0;
	}
#endif
	/* Choose split point along selected axis, and update box bounds. *
	   Current algorithm: split at halfway point. * (Since the box has
	   been shrunk to minimum volume, * any split will produce two
	   nonempty subboxes.) * Note that lb value is max for lower box, so
	   must be < old max. */
	switch (n)
	{
	case 0:
	    lb = (b1->c0max + b1->c0min) / 2;
	    b1->c0max = lb;
	    b2->c0min = lb + 1;
	    break;
	case 1:
	    lb = (b1->c1max + b1->c1min) / 2;
	    b1->c1max = lb;
	    b2->c1min = lb + 1;
	    break;
	case 2:
	    lb = (b1->c2max + b1->c2min) / 2;
	    b1->c2max = lb;
	    b2->c2min = lb + 1;
	    break;
	}
	/* Update stats for boxes */
	update_box(sp, b1);
	update_box(sp, b2);
	numboxes++;
    }
    return numboxes;
}

LOCAL(void)
compute_color(SPEC *sp, boxptr boxp, int icolor)
/* Compute representative color for a box, put it in colormap[icolor] */
{
    /* Current algorithm: mean weighted by pixels (not colors) */
    /* Note it is important to get the rounding correct! */
    hist3d histogram = sp->histogram;
    histptr histp;
    int c0, c1, c2;
    int c0min, c0max, c1min, c1max, c2min, c2max;
    long count;
    long total = 0;
    long c0total = 0;
    long c1total = 0;
    long c2total = 0;

    c0min = boxp->c0min;
    c0max = boxp->c0max;
    c1min = boxp->c1min;
    c1max = boxp->c1max;
    c2min = boxp->c2min;
    c2max = boxp->c2max;

    for (c0 = c0min; c0 <= c0max; c0++)
	for (c1 = c1min; c1 <= c1max; c1++)
	{
	    histp = &histogram[c0][c1][c2min];
	    for (c2 = c2min; c2 <= c2max; c2++)
	    {
		if ((count = *histp++) != 0)
		{
		    total += count;
		    c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
		    c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
		    c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
		}
	    }
	}

    sp->colormap[0][icolor] = (JSAMPLE) ((c0total + (total >> 1)) / total);
    sp->colormap[1][icolor] = (JSAMPLE) ((c1total + (total >> 1)) / total);
    sp->colormap[2][icolor] = (JSAMPLE) ((c2total + (total >> 1)) / total);
}

/* Master routine for color selection */
LOCAL(void)
select_colors(SPEC *sp, int desired_colors)
{
    boxptr boxlist;
    int numboxes;
    int i;

    if (sp->im)
	sp->im->visual_cue(sp->im, "Selecting Colors ...");

    /* Allocate workspace for box list */
    boxlist = fl_malloc(desired_colors * sizeof(box));
    /* Initialize one box containing whole space */
    numboxes = 1;
    boxlist[0].c0min = 0;
    boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
    boxlist[0].c1min = 0;
    boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
    boxlist[0].c2min = 0;
    boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
    /* Shrink it to actually-used volume and set its statistics */
    update_box(sp, &boxlist[0]);
    /* Perform median-cut to produce final box list */
    numboxes = median_cut(sp, boxlist, numboxes, desired_colors);
    /* Compute the representative color for each box, fill colormap */
    for (i = 0; i < numboxes; i++)
	compute_color(sp, &boxlist[i], i);
    sp->actual_number_of_colors = numboxes;
    fl_free(boxlist);
}


/* get histogram */
METHODDEF(void)
prescan_quantize(SPEC *sp, unsigned char **r, unsigned char **g,
		 unsigned char **b, int width, int num_rows)
{
    register histptr histp;
    register hist3d histogram = sp->histogram;
    int row, col;

    if (sp->im)
    {
	sp->im->completed = 0;
	sp->im->visual_cue(sp->im, "Getting Histogram ...");
    }

    for (row = 0; row < num_rows; row++)
    {
	for (col = width; --col >= 0;)
	{
	    /* get pixel value and index into the histogram */
	    histp = &histogram[r[row][col] >> C0_SHIFT]
		[g[row][col] >> C1_SHIFT]
		[b[row][col] >> C2_SHIFT];
	    /* increment, check for overflow and undo increment if so. */
	    if (++(*histp) <= 0)
		(*histp)--;
	}
    }
}

/*
 * Initialize the error-limiting transfer function (lookup table).
 * The raw F-S error computation can potentially compute error values of up to
 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
 * much less, otherwise obviously wrong pixels will be created.  (Typical
 * effects include weird fringes at color-area boundaries, isolated bright
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
 * is to ensure that the "corners" of the color cube are allocated as output
 * colors; then repeated errors in the same direction cannot cause cascading
 * error buildup.  However, that only prevents the error from getting
 * completely out of hand; Aaron Giles reports that error limiting improves
 * the results even with corner colors allocated.
 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
 * well, but the smoother transfer function used below is even better.  Thanks
 * to Aaron Giles for this idea.
 */

LOCAL(void)
init_error_limit(SPEC *sp)
/* Allocate and fill in the error_limiter table */
{
    int *table;
    int in, out;

    table = fl_malloc((MAXJSAMPLE * 2 + 1) * sizeof(int));
    table += MAXJSAMPLE;	/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
    sp->error_limiter = table;

#define STEPSIZE ((MAXJSAMPLE+1)/16)
    /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
    out = 0;
    for (in = 0; in < STEPSIZE; in++, out++)
    {
	table[in] = out;
	table[-in] = -out;
    }
    /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
    for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1)
    {
	table[in] = out;
	table[-in] = -out;
    }
    /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
    for (; in <= MAXJSAMPLE; in++)
    {
	table[in] = out;
	table[-in] = -out;
    }
#undef STEPSIZE
}