1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
// Copyright 2015, Tobias Hermann and the FunctionalPlus contributors.
// https://github.com/Dobiasd/FunctionalPlus
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#pragma once
#include <fplus/function_traits.hpp>
#include <fplus/internal/apply.hpp>
#include <fplus/internal/asserts/functions.hpp>
#include <fplus/internal/asserts/composition.hpp>
#include <fplus/internal/composition.hpp>
#include <functional>
#include <map>
#include <memory>
#include <type_traits>
#include <unordered_map>
#include <utility>
namespace fplus
{
// API search type: bind_1st_of_2 : (((a, b) -> c), a) -> (b -> c)
// Bind first parameter of binary function.
template <typename F, typename T>
auto bind_1st_of_2(F f, T x)
{
return [f, x](auto&& y) {
internal::trigger_static_asserts<internal::bind_1st_of_2_tag,
F,
T,
decltype(y)>();
return internal::invoke(f, x, std::forward<decltype(y)>(y));
};
}
// API search type: bind_2nd_of_2 : (((a, b) -> c), b) -> (a -> c)
// Bind second parameter of binary function.
template <typename F, typename T>
auto bind_2nd_of_2(F f, T y)
{
return [f, y](auto&& x) {
internal::trigger_static_asserts<internal::bind_2nd_of_2_tag,
F,
decltype(x),
T>();
return internal::invoke(f, std::forward<decltype(x)>(x), y);
};
}
// API search type: bind_1st_of_3 : (((a, b, c) -> d), a) -> ((b, c) -> d)
// Bind first parameter of ternary function.
template <typename F, typename X>
auto bind_1st_of_3(F f, X x)
{
return [f, x](auto&& y, auto&& z) {
internal::trigger_static_asserts<internal::bind_1st_of_3_tag,
F,
X,
decltype(y),
decltype(z)>();
return internal::invoke(
f, x, std::forward<decltype(y)>(y), std::forward<decltype(z)>(z));
};
}
// API search type: bind_1st_and_2nd_of_3 : (((a, b, c) -> d), a, b) -> (c -> d)
// Bind first and second parameter of ternary function.
template <typename F, typename X, typename Y>
auto bind_1st_and_2nd_of_3(F f, X x, Y y)
{
return [f, x, y](auto&& z) {
internal::trigger_static_asserts<internal::bind_1st_and_2nd_of_3_tag,
F,
X,
Y,
decltype(z)>();
return internal::invoke(f, x, y, std::forward<decltype(z)>(z));
};
}
// API search type: bind_2nd_and_3rd_of_3 : (((a, b, c) -> d), b, c) -> (a -> d)
// Bind first and second parameter of ternary function.
template <typename F, typename Y, typename Z>
auto bind_2nd_and_3rd_of_3(F f, Y y, Z z)
{
return [f, y, z](auto&& x) {
internal::trigger_static_asserts<internal::bind_2nd_and_3rd_of_3_tag,
F,
decltype(x),
Y,
Z>();
return internal::invoke(f, std::forward<decltype(x)>(x), y, z);
};
}
// API search type: flip : (a -> b) -> (b -> a)
// Flips the arguments of a binary function
// Note: The callable can take a variadic number of arguments
template <typename F>
auto flip(F f)
{
return [f](auto&&... args) {
return internal::apply_impl(
f,
std::forward_as_tuple(std::forward<decltype(args)>(args)...),
internal::make_reverse_index_sequence<sizeof...(args)>{});
};
}
// API search type: forward_apply : (a, (a -> b)) -> b
// Forward application.
// Returns the result of applying the function f to the value x.
template <typename X, typename F>
auto forward_apply(X&& x, F f)
{
internal::trigger_static_asserts<internal::unary_function_tag, F, X>();
return internal::invoke(f, std::forward<X>(x));
}
// API search type: lazy : ((a -> b), a) -> (() -> b)
// Lazy evaluation.
// Returns a function evaluating f with the given arguments when called.
// Also known as defer.
// Note: f can take a variadic number of parameters
template<typename F, typename... Args>
auto lazy(F f, Args ... args)
{
return [f, args...] {
internal::trigger_static_asserts<internal::check_arity_tag, F, Args...>();
return internal::invoke(f, args...);
};
}
// API search type: fixed : a -> (() -> a)
// Identity as a nullary function.
// Returns a function returning x when called.
// Like lazy with identity as f.
template<typename T>
auto fixed(T x)
{
return [x]() -> T
{
return x;
};
}
// API search type: compose : ((a -> b), (b -> c)) -> (a -> c)
// Forward function composition.
// compose(f, g)(x) = g(f(x))
// It is possible to compose a variadic number of callables.
// The first callable can also take a variadic number of parameters.
// compose(f, g, h)(x, y, z) = h(g(f(x, y, z)))
template <typename... Fs>
auto compose(Fs&&... fs)
{
return internal::compose_impl<Fs...>(std::forward<Fs>(fs)...);
}
// API search type: logical_not : (a -> Bool) -> (a -> Bool)
// Converts a predicate p into a new one,
// always returning the exact opposite of p.
// logical_not(f) = \x -> !x
// Note: F can take a variadic number of parameters.
// Equivalent to std::not_fn (C++17)
template <typename Predicate>
auto logical_not(Predicate f)
{
return [f](auto&&... args) {
internal::trigger_static_asserts<internal::unary_function_tag,
Predicate,
decltype(args)...>();
using Res =
std::decay_t<internal::invoke_result_t<Predicate, decltype(args)...>>;
static_assert(std::is_same<Res, bool>::value, "Function must return bool.");
return !internal::invoke(f, std::forward<decltype(args)>(args)...);
};
}
// API search type: logical_or : ((a -> Bool), (a -> Bool)) -> (a -> Bool)
// logical_or(f, g) = \x -> f(x) or g(x)
// Combines to unary predicates into a single one
// that holds true if at least one of the original predicated is true.
template <typename UnaryPredicateF, typename UnaryPredicateG>
auto logical_or(UnaryPredicateF f, UnaryPredicateG g)
{
auto op = [](auto f1, auto f2, auto x) {
return internal::invoke(f1, x) || internal::invoke(f2, x);
};
return internal::logical_binary_op(op, f, g);
}
// API search type: logical_and : ((a -> Bool), (a -> Bool)) -> (a -> Bool)
// logical_and(f, g) = \x -> f(x) and g(x)
// Combines to unary predicates into a single one
// that holds true if both original predicated are true.
template <typename UnaryPredicateF, typename UnaryPredicateG>
auto logical_and(UnaryPredicateF f, UnaryPredicateG g)
{
auto op = [](auto f1, auto f2, auto x) {
return internal::invoke(f1, x) && internal::invoke(f2, x);
};
return internal::logical_binary_op(op, f, g);
}
// API search type: logical_xor : ((a -> Bool), (a -> Bool)) -> (a -> Bool)
// logical_xor(f, g) = \x -> f(x) xor g(x)
// Combines to unary predicates into a single one
// that holds true if exactly one of the original predicated is true.
template <typename UnaryPredicateF, typename UnaryPredicateG>
auto logical_xor(UnaryPredicateF f, UnaryPredicateG g)
{
auto op = [](auto f1, auto f2, auto x) {
return internal::invoke(f1, x) != internal::invoke(f2, x);
};
return internal::logical_binary_op(op, f, g);
}
// API search type: memoize : (a -> b) -> (a -> b)
// Provides Memoization for a given (referentially transparent)
// unary function.
// Returns a closure mutating an internally held dictionary
// mapping input values to output values.
template <typename F,
typename FIn = typename utils::function_traits<F>::template arg<0>::type,
typename FOut = typename std::result_of<F(FIn)>::type,
typename MemoMap = std::unordered_map<
typename std::remove_reference<typename std::remove_const<FIn>::type>::type,
FOut>>
std::function<FOut(FIn)> memoize(F f)
{
static_assert(utils::function_traits<F>::arity == 1, "Wrong arity.");
MemoMap storage;
return [=](FIn x) mutable -> FOut
{
const auto it = storage.find(x);
if (it == storage.end())
{
return storage.emplace(x, internal::invoke(f, x)).first->second;
}
else
{
return it->second;
}
};
}
namespace internal
{
template <typename F, typename Cache,
typename FIn1 = typename utils::function_traits<F>::template arg<0>::type,
typename FIn2 = typename utils::function_traits<F>::template arg<1>::type,
typename FOut = typename std::result_of<F(FIn1, FIn2)>::type,
typename ResultF = std::function<FOut(FIn2)>>
ResultF memoize_recursive_helper(const F f, std::shared_ptr<Cache> storage)
{
return [f, storage](FIn2 x)
{
const auto it = storage->find(x);
if (it == storage->end())
{
const auto g = memoize_recursive_helper(f, storage);
(*storage)[x] = f(g, x);
}
return (*storage)[x];
};
}
} // namespace internal
// API search type: memoize_recursive : (a -> b) -> (a -> b)
// Provides Memoization for a given (referentially transparent)
// recursive binary function that takes a continuation as first argument.
// e.g.
// uint64_t fibo_cont(const std::function<uint64_t(uint64_t)>& cont, uint64_t n)
// {
// if (n < 2) return n;
// else return cont(n-1) + cont(n-2);
// }
// Returns a closure mutating an internally held dictionary
// mapping input values to output values.
template <typename F,
typename FIn1 = typename utils::function_traits<F>::template arg<0>::type,
typename FIn2 = typename utils::function_traits<F>::template arg<1>::type,
typename FOut = typename std::result_of<F(FIn1, FIn2)>::type,
typename MemoMap = std::unordered_map<
typename std::remove_reference<typename std::remove_const<FIn2>::type>::type,
FOut>>
std::function<FOut(FIn2)> memoize_recursive(F f)
{
std::shared_ptr<MemoMap> storage = std::make_shared<MemoMap>();
return internal::memoize_recursive_helper(f, storage);
}
// API search type: memoize_binary : ((a, b) -> c) -> ((a, b) -> c)
// Provides Memoization for a given (referentially transparent)
// binary function.
// Returns a closure mutating an internally held dictionary
// mapping input values to output values.
template <typename F,
typename FIn1 = typename utils::function_traits<F>::template arg<0>::type,
typename FIn2 = typename utils::function_traits<F>::template arg<1>::type,
typename FOut = typename std::result_of<F(FIn1, FIn2)>::type,
typename ParamPair = std::pair<
typename std::remove_reference<typename std::remove_const<FIn1>::type>::type,
typename std::remove_reference<typename std::remove_const<FIn2>::type>::type>,
typename MemoMap = std::unordered_map<ParamPair, FOut>>
std::function<FOut(FIn1, FIn2)> memoize_binary(F f)
{
const auto unary_f = [f](const ParamPair& params) -> FOut
{
return internal::invoke(f, params.first, params.second);
};
auto unary_f_memoized = memoize<decltype(unary_f),
ParamPair, FOut, std::map<ParamPair, FOut>>(unary_f);
return [unary_f_memoized](FIn1 a, FIn2 b) mutable -> FOut
{
return unary_f_memoized(std::make_pair(a, b));
};
}
// API search type: constructor_as_function : a -> b
// struct foo
// {
// foo(int a, int b) : a_(a), b_(2*b) {}
// int a_;
// int b_;
// };
// const auto create_foo = constructor_as_function<foo, int, int>;
// create_foo(1,2) == foo(1, 2);
template <typename T, class ... Types>
T constructor_as_function(Types ... args)
{
return T(args...);
}
} // namespace fplus
#define fplus_get_mem(fplus_get_mem_name) \
[](const auto& fplus_get_mem_x) \
{ \
return fplus_get_mem_x.fplus_get_mem_name; \
}
#define fplus_get_ptr_mem(fplus_get_ptr_mem_name) \
[](const auto& fplus_get_ptr_mem_x) \
{ \
return fplus_get_ptr_mem_x->fplus_get_ptr_mem_name; \
}
#define fplus_get_c_mem_t(fplus_get_c_mem_t_c, fplus_get_c_mem_t_name, fplus_get_c_mem_t_t) \
[](const fplus_get_c_mem_t_c& fplus_get_c_mem_t_x) -> fplus_get_c_mem_t_t \
{ \
return fplus_get_c_mem_t_x.fplus_get_c_mem_t_name; \
}
#define fplus_get_c_ptr_mem_t(fplus_get_c_ptr_mem_t_c, fplus_get_c_ptr_mem_t_name, fplus_get_c_ptr_mem_t_t) \
[](const fplus_get_c_ptr_mem_t_c& fplus_get_c_ptr_mem_t_x) -> fplus_get_c_ptr_mem_t_t \
{ \
return fplus_get_c_ptr_mem_t_x->fplus_get_c_ptr_mem_t_name; \
}
#define fplus_mem_fn(fplus_mem_fn_name) \
[](const auto& fplus_mem_fn_x) \
{ \
return fplus_mem_fn_x.fplus_mem_fn_name(); \
}
#define fplus_ptr_mem_fn(fplus_ptr_mem_fn_name) \
[](const auto& fplus_ptr_mem_fn_x) \
{ \
return fplus_ptr_mem_fn_x->fplus_ptr_mem_fn_name(); \
}
#define fplus_c_mem_fn_t(fplus_c_mem_fn_t_c, fplus_c_mem_fn_t_name, fplus_c_mem_fn_t_t) \
[](const fplus_c_mem_fn_t_c& fplus_c_mem_fn_t_x) -> fplus_c_mem_fn_t_t \
{ \
return fplus_c_mem_fn_t_x.fplus_c_mem_fn_t_name(); \
}
#define fplus_c_ptr_mem_fn_t(fplus_c_ptr_mem_fn_t_c, fplus_c_ptr_mem_fn_t_name, fplus_c_ptr_mem_fn_t_t) \
[](const fplus_c_ptr_mem_fn_t_c& fplus_c_ptr_mem_fn_t_x) -> fplus_c_ptr_mem_fn_t_t \
{ \
return fplus_c_ptr_mem_fn_t_x->fplus_c_ptr_mem_fn_t_name(); \
}
|