File: optimize.hpp

package info (click to toggle)
libfplus 0.2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,904 kB
  • sloc: cpp: 27,543; javascript: 634; sh: 105; python: 103; makefile: 6
file content (181 lines) | stat: -rw-r--r-- 5,985 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright 2015, Tobias Hermann and the FunctionalPlus contributors.
// https://github.com/Dobiasd/FunctionalPlus
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <fplus/container_common.hpp>
#include <fplus/transform.hpp>
#include <array>
#include <chrono>
#include <functional>

namespace fplus
{

// Optimizes the initial position to the nearest local minimum
// in regards to the objective_function
// using numerical gradient descent based on the epsilon neighborhood.
// momentum_conservation should be in [0, 1). A low value means much decay.
// If no fixed step size is provided, each step advances by the length
// of the gradient.
// In both cases the step is scaled with a step factor, starting at 1.0.
// If one iteration results in no further improvement,
// the step factor is reduced by a factor of 0.5.
// The callback is executed with
// iteration, step factor, momentum and current position
// after every iteration.
// A initial step factor other than 1.0 in all dimensions
// can be emulated by scaling ones objective function accordingly.
// Optimization stops if one of the provided criteria is met.
// minimize_downhill<1>(\x -> square(x[0] + 2), 0.0001, 0.01, {123})[0] == -2;
template <std::size_t N, typename F, typename pos_t = std::array<double, N>>
pos_t minimize_downhill(
        F objective_function,
        double epsilon,
        const pos_t& init_pos,
        maybe<double> fixed_step_size = nothing<double>(),
        double momentum_conservation = 0.5,
        double sufficing_value = std::numeric_limits<double>::lowest(),
        double min_step_factor = std::numeric_limits<double>::min(),
        std::size_t max_iterations = std::numeric_limits<std::size_t>::max(),
        long int max_milliseconds = std::numeric_limits<long int>::max(),
        const std::function<
                void (std::size_t, double, const pos_t&, const pos_t&)>&
            callback =
            std::function<
                void (std::size_t, double, const pos_t&, const pos_t&)>())
{
    std::size_t iteration = 0;
    double step_factor = 1.0;
    pos_t position = init_pos;
    double value = internal::invoke(objective_function, position);

    const auto start_time = std::chrono::steady_clock::now();
    const auto is_done = [&]() -> bool
    {
        if (max_milliseconds != std::numeric_limits<long int>::max())
        {
            const auto current_time = std::chrono::steady_clock::now();
            const auto elapsed = current_time - start_time;
            const auto elapsed_ms = std::chrono::duration_cast<std::chrono::milliseconds>(elapsed).count();
            if (elapsed_ms >= max_milliseconds)
            {
                return true;
            }
        }
        return
            iteration >= max_iterations ||
            step_factor <= min_step_factor ||
            value <= sufficing_value;
    };

    const auto calc_gradient =
        [&](const pos_t& pos) -> pos_t
    {
        pos_t result;
        for (std::size_t dim = 0; dim < N; ++dim)
        {
            auto test_pos_1 = pos;
            auto test_pos_2 = pos;
            test_pos_1[dim] -= epsilon / 2.0;
            test_pos_2[dim] += epsilon / 2.0;
            const auto val_1 = internal::invoke(objective_function, test_pos_1);
            const auto val_2 = internal::invoke(objective_function, test_pos_2);
            result[dim] = (val_2 - val_1) / epsilon;
        }
        return result;
    };

    const auto add = [](const pos_t& p1, const pos_t& p2) -> pos_t
    {
        pos_t result;
        for (std::size_t dim = 0; dim < N; ++dim)
        {
            result[dim] = p1[dim] + p2[dim];
        }
        return result;
    };

    const auto multiply = [](const pos_t& p, double f) -> pos_t
    {
        pos_t result;
        for (std::size_t dim = 0; dim < N; ++dim)
        {
            result[dim] = p[dim] * f;
        }
        return result;
    };

    const auto dist_to_origin = [](const pos_t& p) -> double
    {
        double acc = 0;
        for (std::size_t dim = 0; dim < N; ++dim)
        {
            acc += square(p[dim]);
        }
        return sqrt(acc);
    };

    const auto normalize = [&](const pos_t& p) -> pos_t
    {
        return multiply(p, 1.0 / dist_to_origin(p));
    };

    const auto null_vector = []() -> pos_t
    {
        pos_t result;
        for (std::size_t dim = 0; dim < N; ++dim)
        {
            result[dim] = 0;
        }
        return result;
    };

    pos_t momentum = null_vector();
    while (!is_done())
    {
        auto new_momentum = multiply(momentum, momentum_conservation);
        pos_t gradient = calc_gradient(add(position, new_momentum));
        const auto inverse_gradient = multiply(gradient, -1.0);

        auto new_momentum_add =
            is_nothing(fixed_step_size) ?
                inverse_gradient :
                multiply(
                    normalize(inverse_gradient),
                    fixed_step_size.unsafe_get_just());

        new_momentum =
            multiply(
                add(new_momentum, new_momentum_add),
                step_factor);
        if (dist_to_origin(momentum) <= std::numeric_limits<double>::min() &&
            dist_to_origin(new_momentum) <= std::numeric_limits<double>::min())
        {
            break;
        }
        const auto new_position = add(position, new_momentum);
        const auto new_value = internal::invoke(objective_function, new_position);
        if (new_value >= value)
        {
            step_factor /= 2.0;
        }
        else
        {
            value = new_value;
            position = new_position;
            momentum = new_momentum;
        }
        ++iteration;
        if (callback)
        {
            callback(iteration, step_factor, momentum, position);
        }
    }
    return position;
}

} // namespace fplus