1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
|
// Copyright 2015, Tobias Hermann and the FunctionalPlus contributors.
// https://github.com/Dobiasd/FunctionalPlus
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#pragma once
#include <fplus/container_common.hpp>
#include <fplus/function_traits.hpp>
#include <fplus/internal/invoke.hpp>
#include <fplus/internal/asserts/pairs.hpp>
#include <utility>
namespace fplus
{
// API search type: apply_to_pair : (((a, b) -> c), (a, b)) -> c
// fwd bind count: 1
// Apply binary function to parts of a pair.
template <typename F, typename FIn0, typename FIn1>
auto apply_to_pair(F f, const std::pair<FIn0, FIn1>& p)
{
internal::trigger_static_asserts<internal::apply_to_pair_tag, F, FIn0, FIn1>();
return internal::invoke(f, p.first, p.second);
}
// API search type: zip_with : (((a, b) -> c), [a], [b]) -> [c]
// fwd bind count: 2
// Zip two sequences using a binary function.
// zip_with((+), [1, 2, 3], [5, 6]) == [1+5, 2+6] == [6, 8]
template <typename ContainerIn1,
typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::decay_t<internal::invoke_result_t<F, X, Y>>,
typename ContainerOut = std::vector<TOut>>
ContainerOut zip_with(F f, const ContainerIn1& xs, const ContainerIn2& ys)
{
internal::trigger_static_asserts<internal::zip_with_tag, F, X, Y>();
ContainerOut result;
std::size_t resultSize = std::min(size_of_cont(xs), size_of_cont(ys));
internal::prepare_container(result, resultSize);
auto itResult = internal::get_back_inserter(result);
auto itXs = std::begin(xs);
auto itYs = std::begin(ys);
for (std::size_t i = 0; i < resultSize; ++i)
{
*itResult = internal::invoke(f, *itXs, *itYs);
++itXs;
++itYs;
}
return result;
}
// API search type: zip_with_3 : (((a, b, c) -> d), [a], [b], [c]) -> [c]
// fwd bind count: 3
// Zip three sequences using a ternary function.
// zip_with_3((+), [1, 2, 3], [5, 6], [1, 1]) == [7, 9]
template <
typename ContainerIn1,
typename ContainerIn2,
typename ContainerIn3,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename Z = typename ContainerIn3::value_type,
typename TOut = std::decay_t<internal::invoke_result_t<F, X, Y, Z>>,
typename ContainerOut = typename std::vector<TOut>>
ContainerOut zip_with_3(F f,
const ContainerIn1& xs,
const ContainerIn2& ys,
const ContainerIn3& zs)
{
internal::trigger_static_asserts<internal::zip_with_3_tag, F, X, Y, Z>();
static_assert(std::is_same<
typename internal::same_cont_new_t<ContainerIn1, void>::type,
typename internal::same_cont_new_t<ContainerIn2, void>::type>::value,
"All three Containers must be of same outer type.");
static_assert(std::is_same<
typename internal::same_cont_new_t<ContainerIn2, void>::type,
typename internal::same_cont_new_t<ContainerIn3, void>::type>::value,
"All three Containers must be of same outer type.");
ContainerOut result;
std::size_t resultSize = std::min(size_of_cont(xs), size_of_cont(ys));
internal::prepare_container(result, resultSize);
auto itResult = internal::get_back_inserter(result);
auto itXs = std::begin(xs);
auto itYs = std::begin(ys);
auto itZs = std::begin(zs);
for (std::size_t i = 0; i < resultSize; ++i)
{
*itResult = internal::invoke(f, *itXs, *itYs, *itZs);
++itXs;
++itYs;
++itZs;
}
return result;
}
// API search type: zip_with_defaults : (((a, b) -> c), a, b, [a], [b]) -> [c]
// fwd bind count: 4
// Zip two sequences and using a binary function
// and extrapolate the shorter sequence with a default value.
// zip_with_defaults((+), 6, 7, [1,2,3], [1,2]) == [2,4,10]
// zip_with_defaults((+), 6, 7, [1,2], [1,2,3]) == [2,4,9]
template <
typename ContainerIn1,
typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type>
auto zip_with_defaults(F f,
const X& default_x,
const Y& default_y,
const ContainerIn1& xs,
const ContainerIn2& ys)
{
internal::trigger_static_asserts<internal::zip_with_tag, F, X, Y>();
const auto size_xs = size_of_cont(xs);
const auto size_ys = size_of_cont(ys);
if (size_xs < size_ys)
{
const auto extended_xs = append(
xs,
replicate<X, ContainerIn1>(size_ys - size_xs, default_x));
return zip_with(f, extended_xs, ys);
}
else if (size_xs > size_ys)
{
const auto extended_ys = append(
ys,
replicate<Y, ContainerIn2>(size_xs - size_ys, default_y));
return zip_with(f, xs, extended_ys);
}
return zip_with(f, xs, ys);
}
// API search type: zip : ([a], [b]) -> [(a, b)]
// fwd bind count: 1
// Combine two sequences to one sequence of pairs.
// zip([1, 2, 3], [5, 6]) == [(1, 5), (2, 6)]
template <typename ContainerIn1, typename ContainerIn2,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type>
auto zip(const ContainerIn1& xs, const ContainerIn2& ys)
{
auto MakePair = [](const X& x, const Y& y)
{ return std::make_pair(x, y); };
return zip_with(MakePair, xs, ys);
}
// API search type: unzip : [(a, b)] -> ([a], [b])
// fwd bind count: 0
// Split a sequence of pairs into two sequences.
// unzip([(1, 5), (2, 6)]) == ([1, 2], [5, 6])
template <typename ContainerIn,
typename TIn = typename ContainerIn::value_type,
typename X = typename TIn::first_type,
typename Y = typename TIn::second_type,
typename ContainerOutX = typename internal::same_cont_new_t<ContainerIn, X>::type,
typename ContainerOutY = typename internal::same_cont_new_t<ContainerIn, Y>::type>
std::pair<ContainerOutX, ContainerOutY> unzip(const ContainerIn& pairs)
{
ContainerOutX firsts;
ContainerOutY seconds;
internal::prepare_container(firsts, size_of_cont(pairs));
internal::prepare_container(seconds, size_of_cont(pairs));
auto itFirsts = internal::get_back_inserter(firsts);
auto itSeconds = internal::get_back_inserter(seconds);
for (const auto& pair : pairs)
{
*itFirsts = pair.first;
*itSeconds = pair.second;
}
return std::make_pair(firsts, seconds);
}
// API search type: fst : ((a, b)) -> a
// fwd bind count: 0
// Return the first element of a pair.
// fst((0, 1)) == 0
template <typename X, typename Y>
X fst(const std::pair<X, Y>& pair)
{
return pair.first;
}
// API search type: snd : ((a, b)) -> b
// fwd bind count: 0
// Return the second element of a pair.
// snd((0, 1)) == 1
template <typename X, typename Y>
Y snd(const std::pair<X, Y>& pair)
{
return pair.second;
}
// API search type: transform_fst : ((a -> c), (a, b)) -> (c, b)
// fwd bind count: 1
// Apply a function to the first element of a pair.
// transform_fst(square, (4, 5)) == (16, 5)
template <typename X, typename Y, typename F,
typename ResultFirst = std::decay_t<internal::invoke_result_t<F, X>>>
std::pair<ResultFirst, Y> transform_fst(F f, const std::pair<X, Y>& pair)
{
internal::trigger_static_asserts<internal::transform_fst_tag, F, X>();
return std::make_pair(internal::invoke(f, pair.first), pair.second);
}
// API search type: transform_snd : ((b -> c), (a, b)) -> (a, c)
// fwd bind count: 1
// Apply a function to the second element of a pair.
// transform_snd(square, (4, 5)) == (4, 25)
template <typename X, typename Y, typename F,
typename ResultSecond = std::decay_t<internal::invoke_result_t<F, Y>>>
std::pair<X, ResultSecond> transform_snd(F f, const std::pair<X, Y>& pair)
{
internal::trigger_static_asserts<internal::transform_snd_tag, F, Y>();
return std::make_pair(pair.first, internal::invoke(f, pair.second));
}
// API search type: transform_pair : ((a -> c), (b -> d), (a, b)) -> (c, d)
// fwd bind count: 2
// Apply functions the both parts of a pair.
// transform_pair(square, square, (4, 5)) == (16, 25)
template <
typename X,
typename Y,
typename F,
typename G,
typename ResultFirst = std::decay_t<internal::invoke_result_t<F, X>>,
typename ResultSecond = std::decay_t<internal::invoke_result_t<G, Y>>>
std::pair<ResultFirst, ResultSecond> transform_pair(F f,
G g,
const std::pair<X, Y>& pair)
{
internal::trigger_static_asserts<internal::transform_fst_tag, F, X>();
internal::trigger_static_asserts<internal::transform_snd_tag, G, Y>();
return std::make_pair(internal::invoke(f, pair.first),
internal::invoke(g, pair.second));
}
// API search type: swap_pair_elems : (a, b) -> (b, a)
// fwd bind count: 0
// Swap the first and the second element of a pair.
// swap_pair_elems((3,4)) == (4,3)
template <typename X, typename Y>
std::pair<Y, X> swap_pair_elems(const std::pair<X, Y>& pair)
{
return std::make_pair(pair.second, pair.first);
}
// API search type: swap_pairs_elems : [(a, b)] -> [(b, a)]
// fwd bind count: 0
// Swap the first and the second element of every pair in a sequence.
// swap_pairs_elems([(1,2), (3,4)]) == [(2,1), (4,3)]
template <typename ContainerIn,
typename X = typename ContainerIn::value_type::first_type,
typename Y = typename ContainerIn::value_type::second_type>
auto swap_pairs_elems(const ContainerIn& xs)
{
return fplus::transform(swap_pair_elems<X, Y>, xs);
}
// API search type: adjacent_pairs : [a] -> [(a, a)]
// fwd bind count: 0
// Split a sequence into pairs of elements.
// adjacent_pairs([0,1,2,3,4]) == [(0,1), (2,3)]
// Also known as zip_with_next.
template <typename Container,
typename ContainerOut =
typename internal::same_cont_new_t<Container,
std::pair<
typename Container::value_type,
typename Container::value_type>>::type>
ContainerOut adjacent_pairs(const Container& xs)
{
typedef typename Container::value_type T;
static_assert(std::is_convertible<
std::pair<T, T>,
typename ContainerOut::value_type>::value,
"ContainerOut can not store pairs of elements from ContainerIn.");
ContainerOut result;
if (size_of_cont(xs) < 2)
return result;
const std::size_t out_size = size_of_cont(xs) / 2;
internal::prepare_container(result, out_size);
auto itOut = internal::get_back_inserter(result);
auto it1 = std::begin(xs);
auto it2 = it1;
internal::advance_iterator(it2, 1);
const auto it_source_end =
internal::add_to_iterator(std::begin(xs), out_size + out_size);
for (;;)
{
*itOut = std::make_pair(*it1, *it2);
internal::advance_iterator(it1, 2);
if (it1 == it_source_end)
break;
internal::advance_iterator(it2, 2);
}
return result;
}
// API search type: overlapping_pairs : [a] -> [(a, a)]
// fwd bind count: 0
// Zip a sequence with itself shifted one element.
// overlapping_pairs([0,1,2,3]) == [(0,1),(1,2),(2,3)]
template <typename Container,
typename ContainerOut =
typename internal::same_cont_new_t<Container,
std::pair<
typename Container::value_type,
typename Container::value_type>, -1>::type>
ContainerOut overlapping_pairs(const Container& xs)
{
typedef typename Container::value_type T;
static_assert(std::is_convertible<
std::pair<T, T>,
typename ContainerOut::value_type>::value,
"ContainerOut can not store pairs of elements from ContainerIn.");
ContainerOut result;
if (size_of_cont(xs) < 2)
return result;
internal::prepare_container(result, size_of_cont(xs) - 1);
auto itOut = internal::get_back_inserter(result);
auto it1 = std::begin(xs);
auto it2 = it1;
internal::advance_iterator(it2, 1);
for (; it2 != std::end(xs); ++it1, ++it2)
{
*itOut = std::make_pair(*it1, *it2);
}
return result;
}
// API search type: overlapping_pairs_cyclic : [a] -> [(a, a)]
// fwd bind count: 0
// Zip a sequence with itself shifted one element,
// finally zipping the last element with the first one.
// overlapping_pairs_cyclic([0,1,2,3]) == [(0,1),(1,2),(2,3),(3,0)]
template <typename Container,
typename ContainerOut =
typename internal::same_cont_new_t<Container,
std::pair<
typename Container::value_type,
typename Container::value_type>, 0>::type>
ContainerOut overlapping_pairs_cyclic(const Container& xs)
{
typedef typename Container::value_type T;
static_assert(std::is_convertible<
std::pair<T, T>,
typename ContainerOut::value_type>::value,
"ContainerOut can not store pairs of elements from ContainerIn.");
ContainerOut result;
if (size_of_cont(xs) < 2)
return result;
internal::prepare_container(result, size_of_cont(xs));
auto itOut = internal::get_back_inserter(result);
auto it1 = std::begin(xs);
auto it2 = it1;
internal::advance_iterator(it2, 1);
for (; it2 != std::end(xs); ++it1, ++it2)
{
*itOut = std::make_pair(*it1, *it2);
}
*itOut = std::make_pair(*it1, xs.front());
return result;
}
// API search type: enumerate : [a] -> [(Int, a)]
// fwd bind count: 0
// Attach its index to every element of a sequence.
// enumerate([6,4,7,6]) == [(0, 6), (1, 4), (2, 7), (3, 6)]
template <typename Container>
auto enumerate(const Container& xs)
{
return zip(all_idxs(xs), xs);
}
// API search type: inner_product_with : (((a, a) -> b), ((b, b) -> b), b, [a], [a]) -> b
// fwd bind count: 4
// Calculate the inner product of two sequences using custom operations.
// inner_product_with((+), (*), [1, 2, 3], [4, 5, 6]) == [32]
template <
typename ContainerIn1,
typename ContainerIn2,
typename OP1,
typename OP2,
typename Acc,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename OP2Out = internal::invoke_result_t<OP2, X, Y>>
auto inner_product_with(OP1 op1,
OP2 op2,
const Acc& value,
const ContainerIn1& xs,
const ContainerIn2& ys)
{
internal::trigger_static_asserts<internal::inner_product_with_tag, OP2, X, Y>();
internal::trigger_static_asserts<internal::inner_product_with_tag, OP1, Acc, OP2Out>();
assert(size_of_cont(xs) == size_of_cont(ys));
return std::inner_product(
std::begin(xs), std::end(xs), std::begin(ys), value, op1, op2);
}
// API search type: inner_product : (a, [a], [a]) -> a
// fwd bind count: 2
// Calculate the inner product of two sequences.
// inner_product([1, 2, 3], [4, 5, 6]) == [32]
template <typename ContainerIn1, typename ContainerIn2,
typename Z>
Z inner_product(const Z& value,
const ContainerIn1& xs, const ContainerIn2& ys)
{
assert(size_of_cont(xs) == size_of_cont(ys));
return std::inner_product(
std::begin(xs), std::end(xs), std::begin(ys), value);
}
// API search type: first_mismatch_idx_by : (((a, b) -> Bool), [a], [b]) -> Maybe Int
// fwd bind count: 2
// Find the first index at which the two sequences differ
// using a binary predicate.
// first_mismatch_idx_by((==), [1, 2, 3], [1, 4, 3]) == Just 1
// first_mismatch_idx_by((==), [1, 2, 3], [1, 4]) == Just 1
// first_mismatch_idx_by((==), [1, 2, 3], [1, 2]) == Nothing
// first_mismatch_idx_by((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename BinaryPredicate>
maybe<std::size_t> first_mismatch_idx_by(BinaryPredicate p,
const ContainerIn1& xs, const ContainerIn2& ys)
{
auto itXs = std::begin(xs);
auto itYs = std::begin(ys);
std::size_t minSize = std::min(size_of_cont(xs), size_of_cont(ys));
for (std::size_t i = 0; i < minSize; ++i)
{
if (!internal::invoke(p, *itXs, *itYs))
{
return just(i);
}
++itXs;
++itYs;
}
return nothing<std::size_t>();
}
// API search type: first_mismatch_by : (((a, b) -> Bool), [a], [b]) -> Maybe (a, b)
// fwd bind count: 2
// Find the first pair of elements differing in the two sequences
// using a binary predicate.
// first_mismatch_by((==), [1, 2, 3], [1, 4, 3]) == Just (2, 4)
// first_mismatch_by((==), [1, 2, 3], [1, 4]) == Just (2, 4)
// first_mismatch_by((==), [1, 2, 3], [1, 2]) == Nothing
// first_mismatch_by((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename BinaryPredicate,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::pair<X, Y>>
maybe<TOut> first_mismatch_by(BinaryPredicate p,
const ContainerIn1& xs, const ContainerIn2& ys)
{
const auto maybe_idx = first_mismatch_idx_by(p, xs, ys);
if (is_nothing(maybe_idx))
{
return nothing<TOut>();
}
else
{
const auto idx = maybe_idx.unsafe_get_just();
return just(std::make_pair(
elem_at_idx(idx, xs),
elem_at_idx(idx, ys)));
}
}
// API search type: first_mismatch_idx_on : ((a -> b), [a], [a]) -> Maybe Int
// fwd bind count: 2
// Find the first index of elements differing in the two sequences
// using a transformer.
// first_mismatch_idx_on((mod 2), [1, 2, 3], [3, 5, 3]) == 1
// first_mismatch_idx_on((mod 2), [1, 2, 3], [1, 5]) == 1
// first_mismatch_idx_on((mod 2), [1, 2, 3], [1, 6]) == Nothing
// first_mismatch_idx_on((mod 2), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::pair<X, Y>>
maybe<std::size_t> first_mismatch_idx_on(F f,
const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_mismatch_idx_by(is_equal_by(f), xs, ys);
}
// API search type: first_mismatch_on : ((a -> b), [a], [a]) -> Maybe (a, a)
// fwd bind count: 2
// Find the first pair of elements differing in the two sequences
// using a transformer.
// first_mismatch_on((mod 2), [1, 2, 3], [3, 5, 3]) == Just (2, 5)
// first_mismatch_on((mod 2), [1, 2, 3], [1, 5]) == Just (2, 5)
// first_mismatch_on((mod 2), [1, 2, 3], [1, 6]) == Nothing
// first_mismatch_on((mod 2), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::pair<X, Y>>
maybe<TOut> first_mismatch_on(F f,
const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_mismatch_by(is_equal_by(f), xs, ys);
}
// API search type: first_mismatch_idx : ([a], [a]) -> Maybe Int
// fwd bind count: 2
// Find the first index of elements differing in the two sequences.
// first_mismatch_idx((==), [1, 2, 3], [1, 4, 3]) == 1
// first_mismatch_idx((==), [1, 2, 3], [1, 4]) == 1
// first_mismatch_idx((==), [1, 2, 3], [1, 2]) == Nothing
// first_mismatch_idx((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type>
maybe<std::size_t> first_mismatch_idx(
const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_mismatch_idx_by(std::equal_to<X>(), xs, ys);
}
// API search type: first_mismatch : ([a], [a]) -> Maybe (a, a)
// fwd bind count: 2
// Find the first pair of elements differing in the two sequences
// first_mismatch((==), [1, 2, 3], [1, 4, 3]) == Just (2, 4)
// first_mismatch((==), [1, 2, 3], [1, 4]) == Just (2, 4)
// first_mismatch((==), [1, 2, 3], [1, 2]) == Nothing
// first_mismatch((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::pair<X, Y>>
maybe<TOut> first_mismatch(const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_mismatch_by(std::equal_to<X>(), xs, ys);
}
// API search type: first_match_idx_by : (((a, b) -> Bool), [a], [b]) -> Maybe Int
// fwd bind count: 2
// Find the first index at which the two sequences equal
// using a binary predicate.
// first_match_idx_by((==), [1, 2, 3], [3, 2, 3]) == Just 1
// first_match_idx_by((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type>
maybe<std::size_t> first_match_idx_by(F f,
const ContainerIn1& xs, const ContainerIn2& ys)
{
auto itXs = std::begin(xs);
auto itYs = std::begin(ys);
std::size_t minSize = std::min(size_of_cont(xs), size_of_cont(ys));
for (std::size_t i = 0; i < minSize; ++i)
{
if (internal::invoke(f, *itXs, *itYs))
{
return just(i);
}
++itXs;
++itYs;
}
return nothing<std::size_t>();
}
// API search type: first_match_by : (((a, b) -> Bool), [a], [b]) -> Maybe (a, b)
// fwd bind count: 2
// Find the first pair of equal elements in the two sequences
// using a binary predicate.
// first_match_by((==), [1, 2, 3], [3, 2, 3]) == Just (2, 2)
// first_match_by((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::pair<X, Y>>
maybe<TOut> first_match_by(F f, const ContainerIn1& xs, const ContainerIn2& ys)
{
const auto maybe_idx = first_match_idx_by(f, xs, ys);
if (is_nothing(maybe_idx))
{
return nothing<TOut>();
}
else
{
const auto idx = maybe_idx.unsafe_get_just();
return just(std::make_pair(
elem_at_idx(idx, xs),
elem_at_idx(idx, ys)));
}
}
// API search type: first_match_idx_on : ((a -> b), [a], [a]) -> Maybe Int
// fwd bind count: 2
// Find the first index of equal elements in the two sequences
// using a transformer.
// first_match_idx_on((mod 2), [1, 2, 3], [2, 4, 3]) == 1
// first_match_idx_on((mod 2), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type>
maybe<std::size_t> first_match_idx_on(F f,
const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_match_idx_by(is_equal_by(f), xs, ys);
}
// API search type: first_match_on : ((a -> b), [a], [a]) -> Maybe (a, a)
// fwd bind count: 2
// Find the first pair of equal elements in the two sequences
// using a transformer.
// first_match_on((mod 2), [1, 2, 3], [2, 4, 3]) == Just (2, 4)
// first_match_on((mod 2), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename F,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::pair<X, Y>>
maybe<TOut> first_match_on(F f, const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_match_by(is_equal_by(f), xs, ys);
}
// API search type: first_match_idx : ([a], [a]) -> Maybe Int
// fwd bind count: 2
// Find the first index of equal elements in the two sequences.
// first_match_idx((==), [1, 2, 3], [5, 2, 3]) == 1
// first_match_idx((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type>
maybe<std::size_t> first_match_idx(
const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_match_idx_by(std::equal_to<X>(), xs, ys);
}
// API search type: first_match : ([a], [a]) -> Maybe (a, a)
// fwd bind count: 2
// Find the first pair of equal elements in the two sequences.
// first_match((==), [1, 2, 3], [5, 2, 3]) == Just (2, 2)
// first_match((==), [], [1, 2]) == Nothing
template <typename ContainerIn1, typename ContainerIn2,
typename X = typename ContainerIn1::value_type,
typename Y = typename ContainerIn2::value_type,
typename TOut = std::pair<X, Y>>
maybe<TOut> first_match(const ContainerIn1& xs, const ContainerIn2& ys)
{
static_assert(std::is_same<X, Y>::value,
"Both containers must have the same element type.");
return first_match_by(std::equal_to<X>(), xs, ys);
}
} // namespace fplus
|