1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
|
// Copyright 2015, Tobias Hermann and the FunctionalPlus contributors.
// https://github.com/Dobiasd/FunctionalPlus
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#pragma once
#include <fplus/container_common.hpp>
#include <fplus/container_properties.hpp>
#include <fplus/generate.hpp>
#include <fplus/pairs.hpp>
#include <fplus/numeric.hpp>
#include <fplus/search.hpp>
#include <fplus/internal/invoke.hpp>
#include <fplus/internal/split.hpp>
namespace fplus
{
// API search type: group_by : (((a, a) -> Bool), [a]) -> [[a]]
// fwd bind count: 1
// Arrange the elements into groups using a given predicate.
// Only groups of consecutive elements are formed.
// For a version scanning the whole container see group_globally_by.
// group_by((==), [1,2,2,2,3,2,2,4,5,5]) == [[1],[2,2,2],[3],[2,2],[4],[5,5]]
// BinaryPredicate p is a (not neccessarily transitive) connectivity check.
// O(n)
template <typename BinaryPredicate, typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut group_by(BinaryPredicate p, const ContainerIn& xs)
{
// ContainerOut is not deduced to
// SameContNewType(ContainerIn, ContainerIn)
// here, since ContainerIn could be a std::string.
internal::check_binary_predicate_for_container<BinaryPredicate, ContainerIn>();
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
ContainerOut result;
if (is_empty(xs))
return result;
typedef typename ContainerOut::value_type InnerContainerOut;
*internal::get_back_inserter(result) = InnerContainerOut(1, xs.front());
for (auto it = ++std::begin(xs); it != std::end(xs); ++it)
{
if (internal::invoke(p, result.back().back(), *it))
*internal::get_back_inserter(result.back()) = *it;
else
*internal::get_back_inserter(result) = InnerContainerOut(1, *it);
}
return result;
}
// API search type: group_on : ((a -> b), [a]) -> [[a]]
// fwd bind count: 1
// Arrange elements equal after applying a transformer into groups.
// Only groups of consecutive elements are formed.
// For a version scanning the whole container see group_globally_on.
// group_on((mod 10), [12,22,34]) == [[12,22],[34]]
// O(n)
template <typename F, typename ContainerIn>
auto group_on(F f, const ContainerIn& xs)
{
return group_by(is_equal_by(f), xs);
}
// API search type: group_on_labeled : ((a -> b), [a]) -> [(b, [a])]
// fwd bind count: 1
// Arrange elements equal after applying a transformer into groups,
// adding the transformation result as a label to the group.
// Only groups of consecutive elements are formed.
// For a version scanning the whole container see group_globally_on_labeled.
// group_on_labeled((mod 10), [12,22,34]) == [(2,[12,22]), (4,[34])]
// O(n)
template <typename F, typename ContainerIn>
auto group_on_labeled(F f, const ContainerIn& xs)
{
const auto group = [](auto f1, const auto& xs1)
{
return group_by(f1, xs1);
};
return internal::group_on_labeled_impl(group, f, xs);
}
// API search type: group : [a] -> [[a]]
// fwd bind count: 0
// Arrange equal elements into groups.
// Only groups of consecutive elements are formed.
// For a version scanning the whole container see group_globally.
// group([1,2,2,2,3,2,2,4,5,5]) == [[1],[2,2,2],[3],[2,2],[4],[5,5]]
// O(n)
template <typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut group(const ContainerIn& xs)
{
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
typedef typename ContainerIn::value_type T;
auto pred = [](const T& x, const T& y) { return x == y; };
return group_by<decltype(pred), ContainerIn, ContainerOut>(pred, xs);
}
// API search type: group_globally_by : (((a, a) -> Bool), [a]) -> [[a]]
// fwd bind count: 1
// Arrange equal elements into groups.
// group_globally_by((==), [1,2,2,2,3,2,2,4,5,5])
// == [[1],[2,2,2,2,2],[3],[4],[5,5]]
// BinaryPredicate p is a
// transitive (whenever p(x,y) and p(y,z), then also p(x,z)) equality check.
// O(n^2)
// If you need O(n*log(n)), sort and then use group_by
template <typename BinaryPredicate, typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut group_globally_by(BinaryPredicate p, const ContainerIn& xs)
{
internal::check_binary_predicate_for_container<BinaryPredicate, ContainerIn>();
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
typedef typename ContainerOut::value_type InnerContainerOut;
ContainerOut result;
for (const auto& x : xs)
{
bool found = false;
for (auto& ys : result)
{
if (internal::invoke(p, x, ys.back()))
{
*internal::get_back_inserter(ys) = x;
found = true;
break;
}
}
if (!found)
{
*internal::get_back_inserter(result) = InnerContainerOut(1, x);
}
}
return result;
}
// API search type: group_globally_on : ((a -> b), [a]) -> [[a]]
// fwd bind count: 1
// Arrange elements equal after applying a transformer into groups.
// group_globally_on((mod 10), [12,34,22]) == [[12,22],[34]]
// O(n^2)
// If you need O(n*log(n)), sort and then use group_on
template <typename F, typename ContainerIn>
auto group_globally_on(F f, const ContainerIn& xs)
{
return group_globally_by(is_equal_by(f), xs);
}
// API search type: group_globally_on_labeled : ((a -> b), [a]) -> [(b, [a])]
// fwd bind count: 1
// Arrange elements equal after applying a transformer into groups,
// adding the transformation result as a label to the group.
// group_globally_on_labeled((mod 10), [12,34,22]) == [(2,[12,22]),(4, [34])]
// O(n^2)
// If you need O(n*log(n)), sort and then use group_on_labeled
template <typename F, typename ContainerIn>
auto group_globally_on_labeled(F f, const ContainerIn& xs)
{
const auto group = [](auto f1, const auto& xs1)
{
return group_globally_by(f1, xs1);
};
return internal::group_on_labeled_impl(group, f, xs);
}
// API search type: group_globally : [a] -> [[a]]
// fwd bind count: 0
// Arrange equal elements into groups.
// group_globally([1,2,2,2,3,2,2,4,5,5]) == [[1],[2,2,2,2,2],[3],[4],[5,5]]
// O(n^2)
// If you need O(n*log(n)), sort and then use group
template <typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut group_globally(const ContainerIn& xs)
{
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
typedef typename ContainerIn::value_type T;
auto pred = [](const T& x, const T& y) { return x == y; };
return group_globally_by(pred, xs);
}
// API search type: cluster_by : (((a, a) -> Bool), [a]) -> [[a]]
// fwd bind count: 1
// Groups connected components, stable regarding initial order.
// cluster_by(\x y -> abs (y - x) <= 3), [2,3,6,4,12,11,20,23,8,4])
// == [[2,3,6,4,12,11,8,4],[20,23]]
// BinaryPredicate p is a connectivity check, being
// a) commutative (p(x,y) = p(y,x))
// b) reflexive (p(x,x) = true)
// c) not neccessarily transitive, but can be
// O(n^2), memory complexity also O(n^2)
template <typename BinaryPredicate, typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut cluster_by(BinaryPredicate p, const ContainerIn& xs)
{
internal::check_binary_predicate_for_container<BinaryPredicate, ContainerIn>();
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
typedef std::vector<unsigned char> bools;
bools zero_filled_row(size_of_cont(xs), 0);
// adjecency matrix
typedef std::vector<bools> boolss;
boolss adj_mat(size_of_cont(xs), zero_filled_row);
for (const auto& idx_and_val_y : enumerate(xs))
{
auto idx_y = idx_and_val_y.first;
auto val_y = idx_and_val_y.second;
for (const auto& idx_and_val_x : enumerate(xs))
{
auto idx_x = idx_and_val_x.first;
auto val_x = idx_and_val_x.second;
if (internal::invoke(p, val_y, val_x))
{
adj_mat[idx_y][idx_x] = 1;
}
}
}
bools already_used = zero_filled_row;
auto is_already_used = [&](std::size_t i) -> bool
{
return already_used[i] != 0;
};
typedef std::vector<std::size_t> idxs;
typedef std::vector<idxs> idxss;
auto bools_to_idxs = [](const bools& activations) -> idxs
{
auto unsigned_char_to_bool = [](unsigned char x)
{
return x != 0;
};
return find_all_idxs_by(unsigned_char_to_bool, activations);
};
idxss idx_clusters;
std::function<void(std::size_t)> process_idx = [&](std::size_t idx) -> void
{
auto connected_idxs = bools_to_idxs(adj_mat[idx]);
auto new_connected_idxs = drop_if(is_already_used, connected_idxs);
if (is_empty(new_connected_idxs))
{
return;
}
idx_clusters.back() = append(idx_clusters.back(), new_connected_idxs);
for (const auto& new_idx : new_connected_idxs)
{
already_used[new_idx] = 1;
}
for (const auto& new_idx : new_connected_idxs)
{
process_idx(new_idx);
}
};
typedef typename ContainerOut::value_type InnerContainerOut;
for (const auto& idx : all_idxs(xs))
{
if (is_already_used(idx))
{
continue;
}
*internal::get_back_inserter(idx_clusters) = idxs();
*internal::get_back_inserter(idx_clusters.back()) = idx;
already_used[idx] = 1;
process_idx(idx);
}
typedef typename ContainerIn::value_type T;
auto idx_to_val = [&](std::size_t idx) -> T
{
return elem_at_idx(idx, xs);
};
auto idxs_to_vals = [&](const idxs& val_idxs) -> InnerContainerOut
{
return transform_convert<InnerContainerOut>(idx_to_val, sort(val_idxs));
};
return transform_convert<ContainerOut>(idxs_to_vals, idx_clusters);
}
// API search type: split_by : ((a -> Bool), Bool, [a]) -> [[a]]
// fwd bind count: 2
// Split a sequence at every element fulfilling a predicate.
// The splitting elements are discarded.
// split_by(is_even, true, [1,3,2,2,5,5,3,6,7,9]) == [[1,3],[],[5,5,3],[7,9]]
// also known as split_when
// O(n)
template <typename UnaryPredicate, typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut split_by
(UnaryPredicate pred, bool allow_empty, const ContainerIn& xs)
{
internal::check_unary_predicate_for_container<UnaryPredicate, ContainerIn>();
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
if (allow_empty && is_empty(xs))
{
return {{}};
}
ContainerOut result;
auto itOut = internal::get_back_inserter(result);
auto start = std::begin(xs);
while (start != std::end(xs))
{
const auto stop = std::find_if(start, std::end(xs), pred);
if (start != stop || allow_empty)
{
*itOut = { start, stop };
}
if (stop == std::end(xs))
{
break;
}
start = internal::add_to_iterator(stop);
if (allow_empty && start == std::end(xs))
{
*itOut = typename ContainerOut::value_type();
}
}
return result;
}
// API search type: split_by_keep_separators : ((a -> Bool), [a]) -> [[a]]
// fwd bind count: 1
// Split a sequence at every element fulfilling a predicate.
// The splitting elements are kept.
// split_by_keep_separators(is_even, true, [1,3,2,2,5,5,3,6,7,9])
// == [[1,3],[2],[2,5,5,3],[6,7,9]]
// O(n)
template <typename UnaryPredicate, typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut split_by_keep_separators
(UnaryPredicate pred, const ContainerIn& xs)
{
internal::check_unary_predicate_for_container<UnaryPredicate, ContainerIn>();
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
ContainerOut result;
if (is_empty(xs))
return result;
auto itOut = internal::get_back_inserter(result);
auto start = std::begin(xs);
while (start != std::end(xs))
{
const auto stop = std::find_if(
internal::add_to_iterator(start), std::end(xs), pred);
*itOut = { start, stop };
if (stop == std::end(xs))
{
break;
}
start = stop;
}
return result;
}
// API search type: split : (a, Bool, [a]) -> [[a]]
// fwd bind count: 2
// Split a sequence at every element equal to x.
// The splitting elements are discarded.
// split(0, true, [1,3,2,0,0,6,0,7,5]) == [[1,3,2],[],[6],[7,5]]
// O(n)
template <typename ContainerIn,
typename T = typename ContainerIn::value_type>
auto split(const T& x, bool allow_empty, const ContainerIn& xs)
{
return split_by(is_equal_to(x), allow_empty, xs);
}
// API search type: split_one_of : ([a], Bool, [a]) -> [[a]]
// fwd bind count: 2
// Split a sequence at every element present in delimiters.
// The splitting elements are discarded.
// Also known as split_words_by_many.
// split_one_of([0,3], true [1,3,2,0,0,6,0,7,5]) == [[1],[2],[],[6],[7,5]]
// split_one_of(" o", false, "How are u?") == ["H","w","are","u?"]
// O(n)
template <typename ContainerIn,
typename ContainerDelims>
auto split_one_of(
const ContainerDelims delimiters, bool allow_empty, const ContainerIn& xs)
{
const auto pred = [&](const typename ContainerIn::value_type& x) -> bool
{
return is_elem_of(x, delimiters);
};
return split_by(pred, allow_empty, xs);
}
// API search type: split_keep_separators : ((a -> Bool), [a]) -> [[a]]
// fwd bind count: 1
// Split a sequence at every element equal to x.
// The splitting elements are kept.
// split_keep_separators(2, true, [1,3,2,2,5,5,3,2,7,9])
// == [[1,3],[2],[2,5,5,3],[6,7,9]]
// O(n)
template <typename ContainerIn,
typename T = typename ContainerIn::value_type>
auto split_keep_separators(const T& x, const ContainerIn& xs)
{
return split_by_keep_separators(is_equal_to(x), xs);
}
// API search type: split_at_idx : (Int, [a]) -> ([a], [a])
// fwd bind count: 1
// Split a sequence at a specific position.
// split_at_idx(2, [0,1,2,3,4]) == ([0,1],[2,3,4])
template <typename Container>
std::pair<Container, Container> split_at_idx
(std::size_t idx, const Container& xs)
{
assert(idx <= size_of_cont(xs));
return make_pair(get_segment(0, idx, xs),
get_segment(idx, size_of_cont(xs), xs));
}
// API search type: insert_at_idx : (Int, a, [a]) -> [a]
// fwd bind count: 2
// Insert an element into a sequence at a specific position.
// insert_at_idx(2, 0, [1,2,3,4]) == [1,2,0,3,4].
template <typename Container,
typename T = typename Container::value_type>
Container insert_at_idx(std::size_t idx, const T& x, const Container& xs)
{
const auto splitted = split_at_idx(idx, xs);
return concat(std::vector<Container>(
{
splitted.first,
singleton_seq<T, Container>(x),
splitted.second
}));
}
// API search type: partition : ((a -> Bool), [a]) -> ([a], [a])
// fwd bind count: 1
// Split a sequence into two groups.
// The first group contains all elements fulfilling the predicate.
// The second group contains the remaining elements.
// partition(is_even, [0,1,1,3,7,2,3,4]) == ([0,2,4],[1,1,3,7,3])
template <typename UnaryPredicate, typename Container>
std::pair<Container, Container> partition
(UnaryPredicate pred, const Container& xs)
{
internal::check_unary_predicate_for_container<UnaryPredicate, Container>();
Container matching;
Container notMatching;
auto itOutMatching = internal::get_back_inserter(matching);
auto itOutNotMatching = internal::get_back_inserter(notMatching);
for (const auto& x : xs)
{
if (internal::invoke(pred, x))
*itOutMatching = x;
else
*itOutNotMatching = x;
}
return make_pair(matching, notMatching);
}
// API search type: split_at_idxs : ([Int], [a]) -> [[a]]
// fwd bind count: 1
// Split a sequence at specific indices.
// split_at_idxs([2,5], [0,1,2,3,4,5,6,7]) == [[0,1],[2,3,4],[5,6,7]]
// split_at_idxs([2,5,5], [0,1,2,3,4,5,6,7]) == [[0,1],[2,3,4],[],[5,6,7]]
template <typename ContainerIdxs, typename ContainerIn,
typename ContainerOut = std::vector<ContainerIn>>
ContainerOut split_at_idxs(const ContainerIdxs& idxsIn, const ContainerIn& xs)
{
static_assert(std::is_same<typename ContainerIdxs::value_type, std::size_t>::value,
"Indices must be std::size_t");
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
ContainerIdxs idxStartC = {0};
ContainerIdxs idxEndC = {size_of_cont(xs)};
std::vector<ContainerIdxs> containerIdxss = {idxStartC, idxsIn, idxEndC};
auto idxs = concat(containerIdxss);
auto idxsClean = sort(idxs);
ContainerOut result;
internal::prepare_container(result, size_of_cont(idxsClean) - 1);
auto itOut = internal::get_back_inserter(result);
auto idxPairs = overlapping_pairs(idxsClean);
for (const auto& idxPair : idxPairs)
{
*itOut = get_segment(idxPair.first, idxPair.second, xs);
}
return result;
}
// API search type: split_every : (Int, [a]) -> [[a]]
// fwd bind count: 1
// Split a sequence every n elements.
// split_every(3, [0,1,2,3,4,5,6,7]) == [[0,1,2],[3,4,5],[6,7]]
// Also known as chunk or chunks.
template <typename ContainerIn,
typename ContainerOut = std::vector<ContainerIn>>
ContainerOut split_every(std::size_t n, const ContainerIn& xs)
{
return split_at_idxs<
std::vector<std::size_t>,
ContainerIn,
ContainerOut>(
numbers_step<std::size_t>(
n, size_of_cont(xs), n),
xs);
}
// API search type: split_by_token : ([a], Bool, [a]) -> [[a]]
// fwd bind count: 2
// Split a sequence at every segment matching a token.
// split_by_token(", ", true, "foo, bar, baz") == ["foo", "bar", "baz"]
template <typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut split_by_token(const ContainerIn& token,
bool allow_empty, const ContainerIn& xs)
{
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
const auto token_begins =
find_all_instances_of_token_non_overlapping(token, xs);
const auto token_ends =
transform(add_to<std::size_t>(size_of_cont(token)), token_begins);
assert(is_sorted(interweave(token_begins, token_ends)));
typedef std::vector<std::size_t> idx_vec;
const auto segments = zip(
fplus::append(idx_vec(1, 0), token_ends),
fplus::append(token_begins, idx_vec(1, size_of_cont(xs))));
ContainerOut result;
auto itOut = internal::get_back_inserter(result);
for (const auto& segment : segments)
{
if (segment.first != segment.second || allow_empty)
*itOut = get_segment(segment.first, segment.second, xs);
}
return result;
}
// API search type: run_length_encode_by : (((a, a) -> Bool), [a]) -> [(Int, a)]
// fwd bind count: 1
// RLE using a specific binary predicate as equality check.
// run_length_encode_by((==),[1,2,2,2,2,3,3,2)) == [(1,1),(4,2),(2,3),(1,2)]
template <typename BinaryPredicate,
typename ContainerIn,
typename T = typename ContainerIn::value_type,
typename ContainerOut =
typename std::vector<std::pair<std::size_t, T>>>
ContainerOut run_length_encode_by(BinaryPredicate pred, const ContainerIn& xs)
{
internal::check_binary_predicate_for_container<BinaryPredicate, ContainerIn>();
ContainerOut result;
auto groups = group_by(pred, xs);
auto group_to_pair = [](const ContainerIn& group) -> std::pair<std::size_t, T>
{
return std::make_pair(size_of_cont(group), group.front());
};
return transform(group_to_pair, groups);
}
// API search type: run_length_encode : [a] -> [(Int, a)]
// fwd bind count: 0
// RLE.
// run_length_encode([1,2,2,2,2,3,3,2)) == [(1,1),(4,2),(2,3),(1,2)]
template <typename ContainerIn,
typename T = typename ContainerIn::value_type>
auto run_length_encode(const ContainerIn& xs)
{
return run_length_encode_by(is_equal<T>, xs);
}
// API search type: run_length_decode : [(Int, a)] -> [a]
// fwd bind count: 0
// Inverse operation to run_length_encode.
// run_length_decode([(1,1),(4,2),(2,3),(1,2)]) == [1,2,2,2,2,3,3,2)
template <typename ContainerIn,
typename Pair = typename ContainerIn::value_type,
typename Cnt = typename Pair::first_type>
auto run_length_decode(const ContainerIn& pairs)
{
static_assert(std::is_convertible<Cnt, std::size_t>::value,
"Count type must be convertible to std::size_t.");
const auto pair_to_vec =
[](const Pair& p)
{
return replicate(p.first, p.second);
};
return concat(transform(pair_to_vec, pairs));
}
// API search type: span : ((a -> Bool), [a]) -> ([a], [a])
// fwd bind count: 1
// span, applied to a predicate p and a list xs,
// returns a tuple where first element is longest prefix (possibly empty)
// of xs of elements that satisfy p
// and second element is the remainder of the list.
// span(is_even, [0,2,4,5,6,7,8]) == ([0,2,4], [5,6,7,8])
template <typename Container, typename UnaryPredicate>
std::pair<Container, Container> span(UnaryPredicate pred, const Container& xs)
{
auto maybeIdx = find_first_idx_by(logical_not(pred), xs);
return {
take(just_with_default<std::size_t>(size_of_cont(xs), maybeIdx), xs),
drop(just_with_default<std::size_t>(size_of_cont(xs), maybeIdx), xs)
};
}
// API search type: divvy : (Int, Int, [a]) -> [[a]]
// fwd bind count: 2
// Generates subsequences overlapping with a specific step.
// divvy(5, 2, [0,1,2,3,4,5,6,7,8,9]) == [[0,1,2,3,4],[2,3,4,5,6],[4,5,6,7,8]]
// divvy(length, 1, xs) is also known as aperture
// divvy(1, step, xs) is also known as stride
// (but withouts the nested lists in the result)
template <typename ContainerIn,
typename ContainerOut = std::vector<ContainerIn>>
ContainerOut divvy(std::size_t length, std::size_t step, const ContainerIn& xs)
{
assert(length > 0);
assert(step > 0);
const auto start_idxs =
numbers_step<std::size_t>(
0, size_of_cont(xs) - (length - 1), step);
ContainerOut result;
internal::prepare_container(result, size_of_cont(start_idxs));
auto itOut = internal::get_back_inserter(result);
for (const auto start_idx : start_idxs)
{
*itOut = get_segment(start_idx, start_idx + length, xs);
}
return result;
}
// API search type: aperture : (Int, [a]) -> [[a]]
// fwd bind count: 1
// Generates overlapping subsequences.
// aperture(5, [0,1,2,3,4,5,6]) == [[0,1,2,3,4],[1,2,3,4,5],[2,3,4,5,6]]
template <typename ContainerIn,
typename ContainerOut = std::vector<ContainerIn>>
ContainerOut aperture(std::size_t length, const ContainerIn& xs)
{
assert(length > 0);
const auto start_idxs =
numbers<std::size_t>(
0, size_of_cont(xs) - (length - 1));
ContainerOut result;
internal::prepare_container(result, size_of_cont(start_idxs));
auto itOut = internal::get_back_inserter(result);
for (const auto start_idx : start_idxs)
{
*itOut = get_segment(start_idx, start_idx + length, xs);
}
return result;
}
// API search type: stride : (Int, [a]) -> [a]
// fwd bind count: 1
// Keeps every nth element.
// stride(3, [0,1,2,3,4,5,6,7]) == [0,3,6]
template <typename Container>
Container stride(std::size_t step, const Container& xs)
{
assert(step > 0);
Container ys;
auto it = internal::get_back_inserter<Container>(ys);
auto it_in = std::begin(xs);
std::size_t i = 0;
const auto xs_size = size_of_cont(xs);
while(it_in != std::end(xs))
{
*it = *it_in;
std::size_t increment = std::min(step, xs_size - i);
internal::advance_iterator(it_in, increment);
i += increment;
}
return ys;
}
// API search type: winsorize : (Float, [Float]) -> [Float]
// fwd bind count: 1
// Winsorizing
// winsorize(0.1, [1,3,4,4,4,4,4,4,6,8]) == [3,3,4,4,4,4,4,4,6,6]
template <typename Container>
Container winsorize(double trim_ratio, const Container& xs)
{
if (size_of_cont(xs) < 2)
{
return xs;
}
trim_ratio = std::max(trim_ratio, 0.0);
const auto xs_sorted = sort(xs);
std::size_t amount =
floor<double, std::size_t>(
trim_ratio * static_cast<double>(size_of_cont(xs_sorted)));
amount = std::min(size_of_cont(xs_sorted) / 2, amount);
const auto parts = split_at_idxs(
std::vector<std::size_t>({amount, size_of_cont(xs_sorted) - amount}),
xs_sorted);
assert(size_of_cont(parts) == 3);
typedef typename Container::value_type T;
if (is_empty(parts[1]))
{
return Container(size_of_cont(xs_sorted), median(xs_sorted));
}
else
{
const T lower = parts[1].front();
const T upper = parts[1].back();
const auto result = concat(std::vector<Container>({
Container(amount, lower),
parts[1],
Container(amount, upper)}));
assert(size_of_cont(result) == size_of_cont(xs_sorted));
return result;
}
}
// API search type: separate_on : ((a -> b), [a]) -> [[a]]
// fwd bind count: 1
// Separate elements equal after applying a transformer into groups.
// separate_on((mod 10), [12,22,34]) == [[12,34],[22]]
template <typename F, typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut separate_on(F f, const ContainerIn& xs)
{
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
ContainerOut result;
if (is_empty(xs)) {
return result;
}
const auto groups = group_globally_on(f, xs);
bool found = true;
auto itOut = internal::get_back_inserter(result);
std::size_t index = 0;
while (found) {
typename ContainerOut::value_type sub_result;
found = false;
auto itOutInner = internal::get_back_inserter(sub_result);
for (auto& group: groups) {
if (size_of_cont(group) > index)
{
*itOutInner = group[index];
found = true;
}
}
if (found) {
*itOut = sub_result;
++index;
}
}
return result;
}
// API search type: separate : [a] -> [[a]]
// fwd bind count: 0
// Separate equal elements into groups.
// separate([1, 2, 2, 3, 3, 4, 4, 4]) == [[1, 2, 3, 4], [2, 3, 4], [4]]
template <typename ContainerIn,
typename ContainerOut = typename std::vector<ContainerIn>>
ContainerOut separate(const ContainerIn& xs)
{
static_assert(std::is_same<ContainerIn,
typename ContainerOut::value_type>::value,
"Containers do not match.");
typedef typename ContainerIn::value_type T;
return separate_on(identity<T>, xs);
}
} // namespace fplus
|