File: transform.hpp

package info (click to toggle)
libfplus 0.2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,904 kB
  • sloc: cpp: 27,543; javascript: 634; sh: 105; python: 103; makefile: 6
file content (667 lines) | stat: -rw-r--r-- 24,060 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
// Copyright 2015, Tobias Hermann and the FunctionalPlus contributors.
// https://github.com/Dobiasd/FunctionalPlus
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <fplus/container_common.hpp>
#include <fplus/filter.hpp>
#include <fplus/generate.hpp>
#include <fplus/maybe.hpp>
#include <fplus/maps.hpp>
#include <fplus/result.hpp>
#include <fplus/split.hpp>
#include <fplus/composition.hpp>
#include <fplus/function_traits.hpp>

#include <fplus/internal/asserts/functions.hpp>
#include <fplus/internal/invoke.hpp>

#include <algorithm>
#include <future>
#include <iterator>
#include <mutex>
#include <random>

namespace fplus
{

// API search type: transform_with_idx : (((Int, a) -> b), [a]) -> [b]
// fwd bind count: 1
// Apply a function to every index and corresponding element of a sequence.
// transform_with_idx(f, [6, 4, 7]) == [f(0, 6), f(1, 4), f(2, 7)]
template <typename F, typename ContainerIn,
    typename ContainerOut = typename internal::same_cont_new_t_from_binary_f<
        ContainerIn, F, std::size_t, typename ContainerIn::value_type, 0>::type>
ContainerOut transform_with_idx(F f, const ContainerIn& xs)
{
    internal::trigger_static_asserts<internal::binary_function_tag, F>();
    ContainerOut ys;
    internal::prepare_container(ys, size_of_cont(xs));
    auto it = internal::get_back_inserter<ContainerOut>(ys);
    std::size_t idx = 0;
    for (const auto& x : xs)
    {
        *it = internal::invoke(f, idx++, x);
    }
    return ys;
}

// API search type: transform_and_keep_justs : ((a -> Maybe b), [a]) -> [b]
// fwd bind count: 1
// Map function over values and drop resulting nothings.
// Also known as filter_map.
template <typename F, typename ContainerIn>
auto transform_and_keep_justs(F f, const ContainerIn& xs)
{
    using X = typename ContainerIn::value_type;
    internal::
        trigger_static_asserts<internal::unary_function_tag, F, X>();

    using ContainerOut = typename internal::same_cont_new_t<
        ContainerIn,
        typename std::decay_t<internal::invoke_result_t<F, X>>::type>::type;

    auto transformed = transform(f, xs);
    return justs<decltype(transformed), ContainerOut>(transformed);
}

// API search type: transform_and_keep_oks : ((a -> Result b), [a]) -> [b]
// fwd bind count: 1
// Map function over values and drop resulting errors.
template <typename F, typename ContainerIn>
auto transform_and_keep_oks(F f, const ContainerIn& xs)
{
    using X = typename ContainerIn::value_type;
    internal::
        trigger_static_asserts<internal::unary_function_tag, F, X>();

    using ContainerOut = typename internal::same_cont_new_t<
        ContainerIn,
        typename std::decay_t<internal::invoke_result_t<F, X>>::ok_t>::type;
    auto transformed = transform(f, xs);
    return oks<decltype(transformed), ContainerOut>(transformed);
}

// API search type: transform_and_concat : ((a -> [b]), [a]) -> [b]
// fwd bind count: 1
// Map function over values and concat results.
// Also known as flat_map or concat_map.
template <typename F, typename ContainerIn>
auto transform_and_concat(F f, const ContainerIn& xs)
{
    internal::trigger_static_asserts<internal::unary_function_tag, F, typename ContainerIn::value_type>();
    return concat(transform(f, xs));
}

// API search type: replicate_elems : (Int, [a]) -> [a]
// fwd bind count: 1
// Replicate every element n times, concatenate the result.
// replicate_elems(3, [1,2]) == [1, 1, 1, 2, 2, 2]
template <typename Container>
Container replicate_elems(std::size_t n, const Container& xs)
{
    typedef typename Container::value_type T;
    return transform_and_concat(bind_1st_of_2(replicate<T, Container>, n), xs);
}

// API search type: interleave : [[a]] -> [a]
// fwd bind count: 0
// Return a sequence that contains elements from the provided sequences
// in alternating order. If one list runs out of items,
// appends the items from the remaining list.
// interleave([[1,2,3],[4,5],[6,7,8]]) == [1,4,6,2,5,7,3,8]
template <typename ContainerIn,
    typename ContainerOut = typename ContainerIn::value_type>
ContainerOut interleave(const ContainerIn& xss)
{
    typedef typename ContainerIn::value_type inner_t;
    typedef std::vector<typename inner_t::const_iterator> its_t;
    const auto inner_cbegin = [](const inner_t& xs) { return xs.cbegin(); };
    const auto inner_cend = [](const inner_t& xs) { return xs.cend(); };
    auto it_pairs = zip(
        transform_convert<its_t>(inner_cbegin, xss),
        transform_convert<its_t>(inner_cend, xss));

    ContainerOut result;
    const std::size_t length = sum(transform(size_of_cont<inner_t>, xss));
    internal::prepare_container(result, length);
    auto it_out = internal::get_back_inserter<ContainerOut>(result);
    bool still_appending = true;
    while (still_appending)
    {
        still_appending = false;
        for (auto& it_pair : it_pairs)
        {
            if (it_pair.first != it_pair.second)
            {
                *it_out = *it_pair.first;
                still_appending = true;
                ++it_pair.first;
            }
        }
    }
    return result;
}

// API search type: transpose : [[a]] -> [[a]]
// fwd bind count: 0
// Transpose a nested sequence aka. table aka. two-dimensional matrix.
// transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]
// transpose([[1,2,3],[4,5],[7,8,9]]) == [[1,4,7],[2,5,8],[3,9]]
template <typename Container>
Container transpose(const Container& rows)
{
    if (is_empty(rows))
    {
        return {};
    }
    return split_every<typename Container::value_type, Container>(
        size_of_cont(rows), interleave(rows));
}

namespace internal
{

template <typename Container>
Container shuffle(internal::reuse_container_t,
    std::uint_fast32_t seed, Container&& xs)
{
    std::mt19937 g(seed);
    std::shuffle(std::begin(xs), std::end(xs), g);
    return std::forward<Container>(xs);
}

template <typename Container>
Container shuffle(internal::create_new_container_t,
    std::uint_fast32_t seed, const Container& xs)
{
    Container ys = xs;
    return internal::shuffle(internal::reuse_container_t(), seed, std::move(ys));
}

} // namespace internal

// API search type: shuffle : (Int, [a]) -> [a]
// fwd bind count: 1
// Returns a randomly shuffled version of xs.
// Example call: shuffle(std::mt19937::default_seed, xs);
// Example call: shuffle(std::random_device()(), xs);
template <typename Container>
auto shuffle(std::uint_fast32_t seed, Container&& xs)
{
    return(internal::shuffle(internal::can_reuse_v<Container>{},
        seed, std::forward<Container>(xs)));
}

// API search type: sample : (Int, Int, [a]) -> [a]
// fwd bind count: 2
// Returns n random elements from xs without replacement.
// n has to be smaller than or equal to the number of elements in xs.
// Also known as rnd_select.
// Example call: sample(std::mt19937::default_seed, 3, xs);
// Example call: sample(std::random_device()(), 3, xs);
template <typename Container>
Container sample(std::uint_fast32_t seed, std::size_t n, const Container& xs)
{
    assert(n <= size_of_cont(xs));
    return get_segment(0, n, shuffle(seed, xs));
}

// API search type: random_element : (Int, [a]) -> a
// fwd bind count: 1
// Returns one random element from xs.
// xs must be non-empty.
// Example call: random_element(std::mt19937::default_seed, xs)
// Example call: random_element(std::random_device()(), xs)
// Also known as choice.
template <typename Container>
typename Container::value_type random_element(
    std::uint_fast32_t seed, const Container& xs)
{
    assert(is_not_empty(xs));
    std::mt19937 gen(seed);
    std::uniform_int_distribution<std::size_t> dis(0, size_of_cont(xs) - 1);
    return elem_at_idx(dis(gen), xs);
}

// API search type: random_elements : (Int, Int, [a]) -> a
// fwd bind count: 2
// Returns random elements from xs with replacement.
// xs must be non-empty.
// Example call: random_elements(std::mt19937::default_seed, 10, xs)
// Example call: random_elements(std::random_device()(), 10, xs)
template <typename Container>
Container random_elements(
    std::uint_fast32_t seed, std::size_t n, const Container& xs)
{
    assert(is_not_empty(xs));
    std::mt19937 gen(seed);
    std::uniform_int_distribution<std::size_t> dis(0, size_of_cont(xs) - 1);
    const auto draw = [&]() -> typename Container::value_type
    {
        return elem_at_idx(dis(gen), xs);
    };
    return generate<Container>(draw, n);
}

// API search type: apply_functions : ([(a -> b)], a) -> [b]
// fwd bind count: 1
// Applies a list of functions to a value.
template <typename FunctionContainer,
          typename F = typename FunctionContainer::value_type,
          typename FIn>
auto apply_functions(const FunctionContainer& functions, const FIn& x)
{
    internal::trigger_static_asserts<internal::unary_function_tag, F, FIn>();

    using FOut = std::decay_t<internal::invoke_result_t<F, FIn>>;
    using ContainerOut =
        typename internal::same_cont_new_t<FunctionContainer, FOut, 0>::type;

    ContainerOut ys;
    internal::prepare_container(ys, size_of_cont(functions));
    auto it = internal::get_back_inserter<ContainerOut>(ys);
    for (const auto& f : functions)
    {
        *it = internal::invoke(f, x);
    }
    return ys;
}

// API search type: apply_function_n_times : ((a -> a), Int, a) -> a
// fwd bind count: 2
// Applies a functional n times in a row.
template <typename F, typename FIn>
auto apply_function_n_times(F f, std::size_t n, const FIn& x)
{
    internal::trigger_static_asserts<internal::unary_function_tag, F, FIn>();
    using FOut = std::decay_t<internal::invoke_result_t<F, FIn>>;
    static_assert(std::is_same<FOut, FIn>::value,
                  "Input and output of F must be the same type.");
    if (n == 0)
    {
        return x;
    }
    FOut y = internal::invoke(f, x);
    for (std::size_t i = 1; i < n; ++i)
    {
        y = internal::invoke(f, y);
    }
    return y;
}

// API search type: transform_parallelly : ((a -> b), [a]) -> [b]
// fwd bind count: 1
// transform_parallelly((*2), [1, 3, 4]) == [2, 6, 8]
// Same as transform, but can utilize multiple CPUs by using std::launch::async.
// Only makes sense if one run of the provided function
// takes enough time to justify the synchronization overhead.
// One thread per container element is spawned.
// Check out transform_parallelly_n_threads to limit the number of threads.
template <typename F, typename ContainerIn>
auto transform_parallelly(F f, const ContainerIn& xs)
{
    using ContainerOut = typename internal::
        same_cont_new_t_from_unary_f<ContainerIn, F, 0>::type;
    using X = typename ContainerIn::value_type;
    internal::trigger_static_asserts<internal::unary_function_tag, F, X>();
    auto handles = transform([&f](const X& x)
    {
        return std::async(std::launch::async, [&x, &f]()
        {
            return internal::invoke(f, x);
        });
    }, xs);

    ContainerOut ys;
    internal::prepare_container(ys, size_of_cont(xs));
    auto it = internal::get_back_inserter<ContainerOut>(ys);
    for (auto& handle : handles)
    {
        *it = handle.get();
    }
    return ys;
}

// API search type: transform_parallelly_n_threads : (Int, (a -> b), [a]) -> [b]
// fwd bind count: 2
// transform_parallelly_n_threads(4, (*2), [1, 3, 4]) == [2, 6, 8]
// Same as transform, but uses n threads in parallel.
// Only makes sense if one run of the provided function
// takes enough time to justify the synchronization overhead.
// Can be used for applying the MapReduce pattern.
template <typename F, typename ContainerIn>
auto transform_parallelly_n_threads(std::size_t n, F f, const ContainerIn& xs)
{
    using ContainerOut = typename internal::
        same_cont_new_t_from_unary_f<ContainerIn, F, 0>::type;
    using X = typename ContainerIn::value_type;
    using Y = internal::invoke_result_t<F, X>;
    using x_ptr_t =  const X*;
    auto queue = transform_convert<std::vector<x_ptr_t>>(
        [](const X& x) -> x_ptr_t
        {
            return &x;
        }, xs);

    std::mutex queue_mutex;
    std::mutex thread_results_mutex;
    std::map<std::size_t, std::decay_t<Y>> thread_results;
    std::size_t queue_idx = 0;

    const auto worker_func = [&]()
    {
        for (;;)
        {
            std::size_t idx = std::numeric_limits<std::size_t>::max();
            x_ptr_t x_ptr = nullptr;
            {
                std::lock_guard<std::mutex> queue_lock(queue_mutex);
                if (queue_idx == queue.size())
                {
                    return;
                }
                idx = queue_idx;
                x_ptr = queue[idx];
                ++queue_idx;
            }

            const auto y = internal::invoke(f, *x_ptr);

            {
                std::lock_guard<std::mutex> thread_results_lock(
                    thread_results_mutex);
                thread_results.insert(std::make_pair(idx, y));
            }
        }
    };

    const auto create_thread = [&]() -> std::thread
    {
        return std::thread(worker_func);
    };
    auto threads = generate<std::vector<std::thread>>(create_thread, n);

    for (auto& thread : threads)
    {
        thread.join();
    }

    return get_map_values<decltype(thread_results), ContainerOut>(
        thread_results);
}

// API search type: reduce_parallelly : (((a, a) -> a), a, [a]) -> a
// fwd bind count: 2
// reduce_parallelly((+), 0, [1, 2, 3]) == (0+1+2+3) == 6
// Same as reduce, but can utilize multiple CPUs by using std::launch::async.
// Combines the initial value and all elements of the sequence
// using the given function in unspecified order.
// The set of f, init and value_type should form a commutative monoid.
// One thread per container element is spawned.
// Check out reduce_parallelly_n_threads to limit the number of threads.
template <typename F, typename Container>
typename Container::value_type reduce_parallelly(
    F f, const typename Container::value_type& init, const Container& xs)
{
    if (is_empty(xs))
    {
        return init;
    }
    else if (size_of_cont(xs) == 1)
    {
        return internal::invoke(f, init, xs.front());
    }
    else
    {
        typedef typename Container::value_type T;
        const auto f_on_pair = [f](const std::pair<T, T>& p) -> T
        {
            return internal::invoke(f, p.first, p.second);
        };
        auto transform_result =
            transform_parallelly(f_on_pair, adjacent_pairs(xs));
        if (size_of_cont(xs) % 2 == 1)
        {
            transform_result.push_back(last(xs));
        }
        return reduce_parallelly(f, init, transform_result);
    }
}

// API search type: reduce_parallelly_n_threads : (Int, ((a, a) -> a), a, [a]) -> a
// fwd bind count: 3
// reduce_parallelly_n_threads(2, (+), 0, [1, 2, 3]) == (0+1+2+3) == 6
// Same as reduce, but can utilize multiple CPUs by using std::launch::async.
// Combines the initial value and all elements of the sequence
// using the given function in unspecified order.
// The set of f, init and value_type should form a commutative monoid.
template <typename F, typename Container>
typename Container::value_type reduce_parallelly_n_threads(
    std::size_t n,
    F f, const typename Container::value_type& init, const Container& xs)
{
    if (is_empty(xs))
    {
        return init;
    }
    else if (size_of_cont(xs) == 1)
    {
        return internal::invoke(f, init, xs.front());
    }
    else
    {
        typedef typename Container::value_type T;
        const auto f_on_pair = [f](const std::pair<T, T>& p) -> T
        {
            return internal::invoke(f, p.first, p.second);
        };
        auto transform_result =
            transform_parallelly_n_threads(n, f_on_pair, adjacent_pairs(xs));
        if (size_of_cont(xs) % 2 == 1)
        {
            transform_result.push_back(last(xs));
        }
        return reduce_parallelly_n_threads(n, f, init, transform_result);
    }
}

// API search type: reduce_1_parallelly : (((a, a) -> a), [a]) -> a
// fwd bind count: 1
// reduce_1_parallelly((+), [1, 2, 3]) == (1+2+3) == 6
// Same as reduce_1, but can utilize multiple CPUs by using std::launch::async.
// Joins all elements of the sequence using the given function
// in unspecified order.
// The set of f and value_type should form a commutative semigroup.
// One thread per container element is spawned.
// Check out reduce_1_parallelly_n_threads to limit the number of threads.
template <typename F, typename Container>
typename Container::value_type reduce_1_parallelly(F f, const Container& xs)
{
    assert(is_not_empty(xs));
    if (size_of_cont(xs) == 1)
    {
        return xs.front();
    }
    else
    {
        typedef typename Container::value_type T;
        const auto f_on_pair = [f](const std::pair<T, T>& p) -> T
        {
            return internal::invoke(f, p.first, p.second);
        };
        auto transform_result =
            transform_parallelly(f_on_pair, adjacent_pairs(xs));
        if (size_of_cont(xs) % 2 == 1)
        {
            transform_result.push_back(last(xs));
        }
        return reduce_1_parallelly(f, transform_result);
    }
}

// API search type: reduce_1_parallelly_n_threads : (Int, ((a, a) -> a), [a]) -> a
// fwd bind count: 2
// reduce_1_parallelly_n_threads(2, (+), [1, 2, 3]) == (1+2+3) == 6
// Same as reduce_1, but can utilize multiple CPUs by using std::launch::async.
// Joins all elements of the sequence using the given function
// in unspecified order.
// The set of f and value_type should form a commutative semigroup.
template <typename F, typename Container>
typename Container::value_type reduce_1_parallelly_n_threads(
    std::size_t n, F f, const Container& xs)
{
    assert(is_not_empty(xs));
    if (size_of_cont(xs) == 1)
    {
        return xs.front();
    }
    else
    {
        typedef typename Container::value_type T;
        const auto f_on_pair = [f](const std::pair<T, T>& p) -> T
        {
            return internal::invoke(f, p.first, p.second);
        };
        auto transform_result =
            transform_parallelly_n_threads(n, f_on_pair, adjacent_pairs(xs));
        if (size_of_cont(xs) % 2 == 1)
        {
            transform_result.push_back(last(xs));
        }
        return reduce_1_parallelly_n_threads(n, f, transform_result);
    }
}

// API search type: keep_if_parallelly : ((a -> Bool), [a]) -> [a]
// fwd bind count: 1
// Same as keep_if but using multiple threads.
// Can be useful if calling the predicate takes some time.
// keep_if_parallelly(is_even, [1, 2, 3, 2, 4, 5]) == [2, 2, 4]
// One thread per container element is spawned.
// Check out keep_if_parallelly_n_threads to limit the number of threads.
template <typename Pred, typename Container>
Container keep_if_parallelly(Pred pred, const Container& xs)
{
    // Avoid a temporary std::vector<bool>.
    const auto idxs = find_all_idxs_by(
        is_equal_to<std::uint8_t>(1),
        transform_parallelly([pred](const auto & x) -> std::uint8_t {
            return pred(x) ? 1 : 0;
        }, xs));
    return elems_at_idxs(idxs, xs);
}

// API search type: keep_if_parallelly_n_threads : (Int, (a -> Bool), [a]) -> [a]
// fwd bind count: 2
// Same as keep_if but using multiple threads.
// Can be useful if calling the predicate takes some time.
// keep_if_parallelly_n_threads(3, is_even, [1, 2, 3, 2, 4, 5]) == [2, 2, 4]
template <typename Pred, typename Container>
Container keep_if_parallelly_n_threads(
    std::size_t n, Pred pred, const Container& xs)
{
    // Avoid a temporary std::vector<bool>.
    const auto idxs = find_all_idxs_by(
        is_equal_to<std::uint8_t>(1),
        transform_parallelly_n_threads(n, [pred](const auto & x) -> std::uint8_t {
            return pred(x) ? 1 : 0;
        }, xs));
    return elems_at_idxs(idxs, xs);
}

// API search type: transform_reduce : ((a -> b), ((b, b) -> b), b, [a]) -> b
// fwd bind count: 3
// transform_reduce(square, add, 0, [1,2,3]) == 0+1+4+9 = 14
// The set of binary_f, init and unary_f::output should form a
// commutative monoid.
template <typename UnaryF, typename BinaryF, typename Container, typename Acc>
auto transform_reduce(UnaryF unary_f,
                      BinaryF binary_f,
                      const Acc& init,
                      const Container& xs)
{
    return reduce(binary_f, init, transform(unary_f, xs));
}

// API search type: transform_reduce_1 : ((a -> b), ((b, b) -> b), [a]) -> b
// fwd bind count: 2
// transform_reduce_1(square, add, [1,2,3]) == 0+1+4+9 = 14
// The set of binary_f, and unary_f::output should form
// a commutative semigroup.
template <typename UnaryF, typename BinaryF, typename Container>
auto transform_reduce_1(UnaryF unary_f, BinaryF binary_f, const Container& xs)
{
    return reduce_1(binary_f, transform(unary_f, xs));
}

// API search type: transform_reduce_parallelly : ((a -> b), ((b, b) -> b), b, [a]) -> b
// fwd bind count: 3
// transform_reduce_parallelly(square, add, 0, [1,2,3]) == 0+1+4+9 = 14
// Also known as map_reduce.
// The set of binary_f, init and unary_f::output
// should form a commutative monoid.
// One thread per container element is spawned.
// Check out transform_reduce_parallelly_n_threads to limit the number of threads.
template <typename UnaryF, typename BinaryF, typename Container, typename Acc>
auto transform_reduce_parallelly(UnaryF unary_f,
                                 BinaryF binary_f,
                                 const Acc& init,
                                 const Container& xs)
{
    return reduce_parallelly(binary_f, init, transform_parallelly(unary_f, xs));
}

// API search type: transform_reduce_parallelly_n_threads : (Int, (a -> b), ((b, b) -> b), b, [a]) -> b
// fwd bind count: 4
// transform_reduce_parallelly_n_threads(2, square, add, 0, [1,2,3]) == 0+1+4+9 = 14
// Also known as map_reduce.
// The set of binary_f, init and unary_f::output
// should form a commutative monoid.
template <typename UnaryF, typename BinaryF, typename Container, typename Acc>
auto transform_reduce_parallelly_n_threads(std::size_t n,
                                           UnaryF unary_f,
                                           BinaryF binary_f,
                                           const Acc& init,
                                           const Container& xs)
{
    return reduce_parallelly_n_threads(
        n, binary_f, init, transform_parallelly_n_threads(n, unary_f, xs));
}

// API search type: transform_reduce_1_parallelly : ((a -> b), ((b, b) -> b), [a]) -> b
// fwd bind count: 2
// transform_reduce_1_parallelly(square, add, [1,2,3]) == 0+1+4+9 = 14
// Also Known as map_reduce.
// The set of binary_f, and unary_f::output
// should form a commutative semigroup.
// One thread per container element is spawned.
// Check out transform_reduce_1_parallelly_n_threads to limit the number of threads.
template <typename UnaryF, typename BinaryF, typename Container>
auto transform_reduce_1_parallelly(UnaryF unary_f,
                                   BinaryF binary_f,
                                   const Container& xs)
{
    return reduce_1_parallelly(binary_f, transform_parallelly(unary_f, xs));
}

// API search type: transform_reduce_1_parallelly_n_threads : (Int, (a -> b), ((b, b) -> b), [a]) -> b
// fwd bind count: 3
// transform_reduce_1_parallelly_n_threads(2, square, add, [1,2,3]) == 0+1+4+9 = 14
// Also Known as map_reduce.
// The set of binary_f, and unary_f::output
// should form a commutative semigroup.
template <typename UnaryF, typename BinaryF, typename Container>
auto transform_reduce_1_parallelly_n_threads(std::size_t n,
                                             UnaryF unary_f,
                                             BinaryF binary_f,
                                             const Container& xs)
{
    return reduce_1_parallelly_n_threads(
        n, binary_f, transform_parallelly_n_threads(n, unary_f, xs));
}

} // namespace fplus