1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
// Copyright 2015, Tobias Hermann and the FunctionalPlus contributors.
// https://github.com/Dobiasd/FunctionalPlus
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#pragma once
#include <fplus/container_common.hpp>
#include <fplus/maybe.hpp>
#include <vector>
#include <queue>
namespace fplus
{
template <typename T>
struct tree
{
tree (const T& value, const std::vector<tree<T>>& children) :
value_(value), children_(children) {}
T value_;
std::vector<tree<T>> children_;
};
namespace internal
{
template <typename T>
tree<T> make_singleton_tree(const T& x)
{
return {x, {}};
}
} // namespace internal
namespace internal
{
template <typename BinaryPredicate, typename T>
std::vector<tree<T>> presort_trees(BinaryPredicate tree_is_child_of,
std::vector<tree<T>> xs_orig)
{
auto xs = fplus::convert_container<std::list<tree<T>>>(xs_orig);
std::vector<tree<T>> result;
while (!xs.empty())
{
for (auto it = std::begin(xs); it != std::end(xs);)
{
bool has_children = false;
for (auto it_rest = std::begin(xs); it_rest != std::end(xs); ++it_rest)
{
if (it_rest != it && tree_is_child_of(*it_rest, *it))
{
has_children = true;
}
}
if (!has_children)
{
result.push_back(*it);
it = xs.erase(it);
}
else
{
++it;
}
}
}
return result;
}
template <typename BinaryPredicate, typename TreeCont> // todo: name?
TreeCont trees_from_sequence_helper(
BinaryPredicate tree_is_child_of, TreeCont xs_unsorted)
{
TreeCont result;
auto xs = presort_trees(tree_is_child_of, xs_unsorted);
for (auto it = std::begin(xs); it != std::end(xs); ++it)
{
const auto find_pred = bind_1st_of_2(tree_is_child_of, *it);
auto it_find_begin = it;
internal::advance_iterator(it_find_begin, 1);
auto parent_it = std::find_if(it_find_begin, std::end(xs), find_pred);
if (parent_it != std::end(xs))
{
parent_it->children_.push_back(*it);
}
else
{
result.push_back(*it);
}
}
return result;
}
} // namespace internal
// API search type: trees_from_sequence : (((a, a) -> Bool), [a]) -> [Tree a]
// fwd bind count: 1
// Converts the sequence into a tree considering the given binary predicate.
template <typename BinaryPredicate, typename Container> // todo: name?
std::vector<tree<typename Container::value_type>> trees_from_sequence(
BinaryPredicate is_child_of, const Container& xs)
{
internal::check_binary_predicate_for_container<BinaryPredicate, Container>();
typedef typename Container::value_type T;
typedef tree<T> Tree;
const auto singletons = transform_convert<std::vector<Tree>>(
internal::make_singleton_tree<T>, xs);
const auto tree_is_child_of =
[is_child_of](const tree<T>& a, const tree<T>& b) -> bool
{
return is_child_of(a.value_, b.value_);
};
return internal::trees_from_sequence_helper(
tree_is_child_of, std::move(singletons));
}
namespace internal
{
// -1 = a < b
// 0 = a == b
// 1 = b < a
template <typename T>
int tree_cmp(const tree<T>& a, const tree<T>& b)
{
if(a.value_ < b.value_)
{
return -1;
}
else if(b.value_ < a.value_)
{
return 1;
}
else
{
const auto results = zip_with(tree_cmp<T>,
sort_by(tree_cmp<T>, a.children_),
sort_by(tree_cmp<T>, b.children_));
return just_with_default(0, find_first_by(
bind_1st_of_2(is_not_equal<int>, 0),
results));
}
}
template <typename T>
bool tree_less(const tree<T>& a, const tree<T>& b)
{
return tree_cmp(a, b) < 0;
}
} // namespace internal
namespace internal
{
template <typename T>
bool are_normalized_trees_equal(const tree<T>& a, const tree<T>& b)
{
if (a.value_ != b.value_ || a.children_.size() != b.children_.size())
{
return false;
}
else
{
return all(zip_with(are_normalized_trees_equal<T>,
a.children_, b.children_));
}
}
template <typename T>
tree<T> normalize_tree(tree<T> x)
{
x.children_ = sort_by(
internal::tree_less<T>,
transform(normalize_tree<T>, x.children_));
return x;
}
} // namespace internal
// API search type: are_trees_equal : (Tree a, Tree a) -> Bool
// fwd bind count: 1
template <typename T>
bool are_trees_equal(const tree<T>& a, const tree<T>& b)
{
return internal::are_normalized_trees_equal(
internal::normalize_tree(a), internal::normalize_tree(b));
}
// API search type: tree_size : Tree a -> Int
// fwd bind count: 0
// A tree with only one element (root) has size 1.
template <typename T>
std::size_t tree_size(const tree<T>& x)
{
return 1 + sum(transform(tree_size<T>, x.children_));
}
// API search type: tree_depth : Tree a -> Int
// fwd bind count: 0
// A tree with only one element (root) has depth 1.
template <typename T>
std::size_t tree_depth(const tree<T>& x)
{
return 1 + just_with_default<std::size_t>(0,
maximum_maybe(transform(tree_depth<T>, x.children_)));
}
// API search type: flatten_tree_depth_first : Tree a -> [a]
// fwd bind count: 0
template <typename T>
std::vector<T> flatten_tree_depth_first(const tree<T>& x)
{
return prepend_elem(x.value_,
transform_and_concat(flatten_tree_depth_first<T>, x.children_));
}
// API search type: flatten_tree_breadth_first : Tree a -> [a]
// fwd bind count: 0
template <typename T>
std::vector<T> flatten_tree_breadth_first(const tree<T>& x)
{
std::vector<T> result;
result.reserve(tree_size(x));
std::queue<const tree<T>*> q;
q.push(&x);
while (!q.empty())
{
const auto current = q.front();
q.pop();
result.push_back(current->value_);
for (const auto& c : current->children_)
{
q.push(&c);
}
}
return result;
}
} // namespace fplus
|