1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
/*
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
* Copyright (c) 1999-2000 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
#include "private/gc_pmark.h"
#include "gc_inline.h" /* for GC_malloc_kind */
/*
* Some simple primitives for allocation with explicit type information.
* Simple objects are allocated such that they contain a GC_descr at the
* end (in the last allocated word). This descriptor may be a procedure
* which then examines an extended descriptor passed as its environment.
*
* Arrays are treated as simple objects if they have sufficiently simple
* structure. Otherwise they are allocated from an array kind that supplies
* a special mark procedure. These arrays contain a pointer to a
* complex_descriptor as their last word.
* This is done because the environment field is too small, and the collector
* must trace the complex_descriptor.
*
* Note that descriptors inside objects may appear cleared, if we encounter a
* false reference to an object on a free list. In the GC_descr case, this
* is OK, since a 0 descriptor corresponds to examining no fields.
* In the complex_descriptor case, we explicitly check for that case.
*
* MAJOR PARTS OF THIS CODE HAVE NOT BEEN TESTED AT ALL and are not testable,
* since they are not accessible through the current interface.
*/
#include "gc_typed.h"
#define TYPD_EXTRA_BYTES (sizeof(word) - EXTRA_BYTES)
STATIC int GC_explicit_kind = 0;
/* Object kind for objects with indirect */
/* (possibly extended) descriptors. */
STATIC int GC_array_kind = 0;
/* Object kind for objects with complex */
/* descriptors and GC_array_mark_proc. */
/* Array descriptors. GC_array_mark_proc understands these. */
/* We may eventually need to add provisions for headers and */
/* trailers. Hence we provide for tree structured descriptors, */
/* though we don't really use them currently. */
struct LeafDescriptor { /* Describes simple array. */
word ld_tag;
# define LEAF_TAG 1
size_t ld_size; /* bytes per element */
/* multiple of ALIGNMENT. */
size_t ld_nelements; /* Number of elements. */
GC_descr ld_descriptor; /* A simple length, bitmap, */
/* or procedure descriptor. */
};
struct ComplexArrayDescriptor {
word ad_tag;
# define ARRAY_TAG 2
size_t ad_nelements;
union ComplexDescriptor * ad_element_descr;
};
struct SequenceDescriptor {
word sd_tag;
# define SEQUENCE_TAG 3
union ComplexDescriptor * sd_first;
union ComplexDescriptor * sd_second;
};
typedef union ComplexDescriptor {
struct LeafDescriptor ld;
struct ComplexArrayDescriptor ad;
struct SequenceDescriptor sd;
} complex_descriptor;
#define TAG ad.ad_tag
#define ED_INITIAL_SIZE 100
STATIC int GC_typed_mark_proc_index = 0; /* Indices of my mark */
STATIC int GC_array_mark_proc_index = 0; /* procedures. */
STATIC void GC_push_typed_structures_proc(void)
{
GC_PUSH_ALL_SYM(GC_ext_descriptors);
}
/* Add a multiword bitmap to GC_ext_descriptors arrays. Return */
/* starting index. */
/* Returns -1 on failure. */
/* Caller does not hold allocation lock. */
STATIC signed_word GC_add_ext_descriptor(const word * bm, word nbits)
{
size_t nwords = divWORDSZ(nbits + WORDSZ-1);
signed_word result;
size_t i;
word last_part;
size_t extra_bits;
DCL_LOCK_STATE;
LOCK();
while (GC_avail_descr + nwords >= GC_ed_size) {
typed_ext_descr_t *newExtD;
size_t new_size;
word ed_size = GC_ed_size;
if (ed_size == 0) {
GC_ASSERT((word)(&GC_ext_descriptors) % sizeof(word) == 0);
GC_push_typed_structures = GC_push_typed_structures_proc;
UNLOCK();
new_size = ED_INITIAL_SIZE;
} else {
UNLOCK();
new_size = 2 * ed_size;
if (new_size > MAX_ENV) return(-1);
}
newExtD = (typed_ext_descr_t*)GC_malloc_atomic(new_size
* sizeof(typed_ext_descr_t));
if (NULL == newExtD)
return -1;
LOCK();
if (ed_size == GC_ed_size) {
if (GC_avail_descr != 0) {
BCOPY(GC_ext_descriptors, newExtD,
GC_avail_descr * sizeof(typed_ext_descr_t));
}
GC_ed_size = new_size;
GC_ext_descriptors = newExtD;
} /* else another thread already resized it in the meantime */
}
result = GC_avail_descr;
for (i = 0; i < nwords-1; i++) {
GC_ext_descriptors[result + i].ed_bitmap = bm[i];
GC_ext_descriptors[result + i].ed_continued = TRUE;
}
last_part = bm[i];
/* Clear irrelevant bits. */
extra_bits = nwords * WORDSZ - nbits;
last_part <<= extra_bits;
last_part >>= extra_bits;
GC_ext_descriptors[result + i].ed_bitmap = last_part;
GC_ext_descriptors[result + i].ed_continued = FALSE;
GC_avail_descr += nwords;
UNLOCK();
return(result);
}
/* Table of bitmap descriptors for n word long all pointer objects. */
STATIC GC_descr GC_bm_table[WORDSZ/2];
/* Return a descriptor for the concatenation of 2 nwords long objects, */
/* each of which is described by descriptor. */
/* The result is known to be short enough to fit into a bitmap */
/* descriptor. */
/* Descriptor is a GC_DS_LENGTH or GC_DS_BITMAP descriptor. */
STATIC GC_descr GC_double_descr(GC_descr descriptor, word nwords)
{
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
descriptor = GC_bm_table[BYTES_TO_WORDS((word)descriptor)];
}
descriptor |= (descriptor & ~GC_DS_TAGS) >> nwords;
return(descriptor);
}
STATIC complex_descriptor *
GC_make_sequence_descriptor(complex_descriptor *first,
complex_descriptor *second);
/* Build a descriptor for an array with nelements elements, */
/* each of which can be described by a simple descriptor. */
/* We try to optimize some common cases. */
/* If the result is COMPLEX, then a complex_descr* is returned */
/* in *complex_d. */
/* If the result is LEAF, then we built a LeafDescriptor in */
/* the structure pointed to by leaf. */
/* The tag in the leaf structure is not set. */
/* If the result is SIMPLE, then a GC_descr */
/* is returned in *simple_d. */
/* If the result is NO_MEM, then */
/* we failed to allocate the descriptor. */
/* The implementation knows that GC_DS_LENGTH is 0. */
/* *leaf, *complex_d, and *simple_d may be used as temporaries */
/* during the construction. */
#define COMPLEX 2
#define LEAF 1
#define SIMPLE 0
#define NO_MEM (-1)
STATIC int GC_make_array_descriptor(size_t nelements, size_t size,
GC_descr descriptor, GC_descr *simple_d,
complex_descriptor **complex_d,
struct LeafDescriptor * leaf)
{
# define OPT_THRESHOLD 50
/* For larger arrays, we try to combine descriptors of adjacent */
/* descriptors to speed up marking, and to reduce the amount */
/* of space needed on the mark stack. */
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
if (descriptor == (GC_descr)size) {
*simple_d = nelements * descriptor; /* no overflow */
return(SIMPLE);
} else if ((word)descriptor == 0) {
*simple_d = (GC_descr)0;
return(SIMPLE);
}
}
if (nelements <= OPT_THRESHOLD) {
if (nelements <= 1) {
if (nelements == 1) {
*simple_d = descriptor;
return(SIMPLE);
} else {
*simple_d = (GC_descr)0;
return(SIMPLE);
}
}
} else if (size <= BITMAP_BITS/2
&& (descriptor & GC_DS_TAGS) != GC_DS_PROC
&& (size & (sizeof(word)-1)) == 0) {
int result =
GC_make_array_descriptor(nelements/2, 2*size,
GC_double_descr(descriptor,
BYTES_TO_WORDS(size)),
simple_d, complex_d, leaf);
if ((nelements & 1) == 0) {
return(result);
} else {
struct LeafDescriptor * one_element =
(struct LeafDescriptor *)
GC_malloc_atomic(sizeof(struct LeafDescriptor));
if (result == NO_MEM || one_element == 0) return(NO_MEM);
one_element -> ld_tag = LEAF_TAG;
one_element -> ld_size = size;
one_element -> ld_nelements = 1;
one_element -> ld_descriptor = descriptor;
switch(result) {
case SIMPLE:
{
struct LeafDescriptor * beginning =
(struct LeafDescriptor *)
GC_malloc_atomic(sizeof(struct LeafDescriptor));
if (beginning == 0) return(NO_MEM);
beginning -> ld_tag = LEAF_TAG;
beginning -> ld_size = size;
beginning -> ld_nelements = 1;
beginning -> ld_descriptor = *simple_d;
*complex_d = GC_make_sequence_descriptor(
(complex_descriptor *)beginning,
(complex_descriptor *)one_element);
break;
}
case LEAF:
{
struct LeafDescriptor * beginning =
(struct LeafDescriptor *)
GC_malloc_atomic(sizeof(struct LeafDescriptor));
if (beginning == 0) return(NO_MEM);
beginning -> ld_tag = LEAF_TAG;
beginning -> ld_size = leaf -> ld_size;
beginning -> ld_nelements = leaf -> ld_nelements;
beginning -> ld_descriptor = leaf -> ld_descriptor;
*complex_d = GC_make_sequence_descriptor(
(complex_descriptor *)beginning,
(complex_descriptor *)one_element);
break;
}
case COMPLEX:
*complex_d = GC_make_sequence_descriptor(
*complex_d,
(complex_descriptor *)one_element);
break;
}
if (EXPECT(NULL == *complex_d, FALSE)) return NO_MEM;
return(COMPLEX);
}
}
leaf -> ld_size = size;
leaf -> ld_nelements = nelements;
leaf -> ld_descriptor = descriptor;
return(LEAF);
}
STATIC complex_descriptor *
GC_make_sequence_descriptor(complex_descriptor *first,
complex_descriptor *second)
{
struct SequenceDescriptor * result =
(struct SequenceDescriptor *)
GC_malloc(sizeof(struct SequenceDescriptor));
/* Can't result in overly conservative marking, since tags are */
/* very small integers. Probably faster than maintaining type */
/* info. */
if (result != 0) {
result -> sd_tag = SEQUENCE_TAG;
result -> sd_first = first;
result -> sd_second = second;
GC_dirty(result);
REACHABLE_AFTER_DIRTY(first);
REACHABLE_AFTER_DIRTY(second);
}
return((complex_descriptor *)result);
}
STATIC mse * GC_typed_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit, word env);
STATIC mse * GC_array_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit, word env);
STATIC void GC_init_explicit_typing(void)
{
unsigned i;
GC_STATIC_ASSERT(sizeof(struct LeafDescriptor) % sizeof(word) == 0);
/* Set up object kind with simple indirect descriptor. */
GC_explicit_kind = GC_new_kind_inner(GC_new_free_list_inner(),
(WORDS_TO_BYTES((word)-1) | GC_DS_PER_OBJECT),
TRUE, TRUE);
/* Descriptors are in the last word of the object. */
GC_typed_mark_proc_index = GC_new_proc_inner(GC_typed_mark_proc);
/* Set up object kind with array descriptor. */
GC_array_mark_proc_index = GC_new_proc_inner(GC_array_mark_proc);
GC_array_kind = GC_new_kind_inner(GC_new_free_list_inner(),
GC_MAKE_PROC(GC_array_mark_proc_index, 0),
FALSE, TRUE);
GC_bm_table[0] = GC_DS_BITMAP;
for (i = 1; i < WORDSZ/2; i++) {
GC_bm_table[i] = (((word)-1) << (WORDSZ - i)) | GC_DS_BITMAP;
}
}
STATIC mse * GC_typed_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit, word env)
{
word bm = GC_ext_descriptors[env].ed_bitmap;
word * current_p = addr;
word current;
ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
DECLARE_HDR_CACHE;
INIT_HDR_CACHE;
for (; bm != 0; bm >>= 1, current_p++) {
if (bm & 1) {
current = *current_p;
FIXUP_POINTER(current);
if (current >= (word)least_ha && current <= (word)greatest_ha) {
PUSH_CONTENTS((ptr_t)current, mark_stack_ptr,
mark_stack_limit, (ptr_t)current_p);
}
}
}
if (GC_ext_descriptors[env].ed_continued) {
/* Push an entry with the rest of the descriptor back onto the */
/* stack. Thus we never do too much work at once. Note that */
/* we also can't overflow the mark stack unless we actually */
/* mark something. */
mark_stack_ptr++;
if ((word)mark_stack_ptr >= (word)mark_stack_limit) {
mark_stack_ptr = GC_signal_mark_stack_overflow(mark_stack_ptr);
}
mark_stack_ptr -> mse_start = (ptr_t)(addr + WORDSZ);
mark_stack_ptr -> mse_descr.w =
GC_MAKE_PROC(GC_typed_mark_proc_index, env + 1);
}
return(mark_stack_ptr);
}
/* Return the size of the object described by d. It would be faster to */
/* store this directly, or to compute it as part of */
/* GC_push_complex_descriptor, but hopefully it doesn't matter. */
STATIC word GC_descr_obj_size(complex_descriptor *d)
{
switch(d -> TAG) {
case LEAF_TAG:
return(d -> ld.ld_nelements * d -> ld.ld_size);
case ARRAY_TAG:
return(d -> ad.ad_nelements
* GC_descr_obj_size(d -> ad.ad_element_descr));
case SEQUENCE_TAG:
return(GC_descr_obj_size(d -> sd.sd_first)
+ GC_descr_obj_size(d -> sd.sd_second));
default:
ABORT_RET("Bad complex descriptor");
return 0;
}
}
/* Push descriptors for the object at addr with complex descriptor d */
/* onto the mark stack. Return 0 if the mark stack overflowed. */
STATIC mse * GC_push_complex_descriptor(word *addr, complex_descriptor *d,
mse *msp, mse *msl)
{
ptr_t current = (ptr_t)addr;
word nelements;
word sz;
word i;
switch(d -> TAG) {
case LEAF_TAG:
{
GC_descr descr = d -> ld.ld_descriptor;
nelements = d -> ld.ld_nelements;
if (msl - msp <= (ptrdiff_t)nelements) return(0);
sz = d -> ld.ld_size;
for (i = 0; i < nelements; i++) {
msp++;
msp -> mse_start = current;
msp -> mse_descr.w = descr;
current += sz;
}
return(msp);
}
case ARRAY_TAG:
{
complex_descriptor *descr = d -> ad.ad_element_descr;
nelements = d -> ad.ad_nelements;
sz = GC_descr_obj_size(descr);
for (i = 0; i < nelements; i++) {
msp = GC_push_complex_descriptor((word *)current, descr,
msp, msl);
if (msp == 0) return(0);
current += sz;
}
return(msp);
}
case SEQUENCE_TAG:
{
sz = GC_descr_obj_size(d -> sd.sd_first);
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_first,
msp, msl);
if (msp == 0) return(0);
current += sz;
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_second,
msp, msl);
return(msp);
}
default:
ABORT_RET("Bad complex descriptor");
return 0;
}
}
GC_ATTR_NO_SANITIZE_THREAD
static complex_descriptor *get_complex_descr(word *addr, word nwords)
{
return (complex_descriptor *)addr[nwords - 1];
}
#ifdef AO_HAVE_store_release
# define set_obj_descr(op, nwords, d) \
AO_store_release((volatile AO_t *)(op) + (nwords) - 1, (AO_t)(d))
#else
# define set_obj_descr(op, nwords, d) \
(void)(((word *)(op))[(nwords) - 1] = (word)(d))
#endif
STATIC mse * GC_array_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit,
word env GC_ATTR_UNUSED)
{
hdr * hhdr = HDR(addr);
word sz = hhdr -> hb_sz;
word nwords = BYTES_TO_WORDS(sz);
complex_descriptor *descr = get_complex_descr(addr, nwords);
mse * orig_mark_stack_ptr = mark_stack_ptr;
mse * new_mark_stack_ptr;
if (descr == 0) {
/* Found a reference to a free list entry. Ignore it. */
return(orig_mark_stack_ptr);
}
/* In use counts were already updated when array descriptor was */
/* pushed. Here we only replace it by subobject descriptors, so */
/* no update is necessary. */
new_mark_stack_ptr = GC_push_complex_descriptor(addr, descr,
mark_stack_ptr,
mark_stack_limit-1);
if (new_mark_stack_ptr == 0) {
/* Explicitly instruct Clang Static Analyzer that ptr is non-null. */
if (NULL == mark_stack_ptr) ABORT("Bad mark_stack_ptr");
/* Doesn't fit. Conservatively push the whole array as a unit */
/* and request a mark stack expansion. */
/* This cannot cause a mark stack overflow, since it replaces */
/* the original array entry. */
# ifdef PARALLEL_MARK
/* We might be using a local_mark_stack in parallel mode. */
if (GC_mark_stack + GC_mark_stack_size == mark_stack_limit)
# endif
{
GC_mark_stack_too_small = TRUE;
}
new_mark_stack_ptr = orig_mark_stack_ptr + 1;
new_mark_stack_ptr -> mse_start = (ptr_t)addr;
new_mark_stack_ptr -> mse_descr.w = sz | GC_DS_LENGTH;
} else {
/* Push descriptor itself */
new_mark_stack_ptr++;
new_mark_stack_ptr -> mse_start = (ptr_t)(addr + nwords - 1);
new_mark_stack_ptr -> mse_descr.w = sizeof(word) | GC_DS_LENGTH;
}
return new_mark_stack_ptr;
}
GC_API GC_descr GC_CALL GC_make_descriptor(const GC_word * bm, size_t len)
{
signed_word last_set_bit = (signed_word)len - 1;
GC_descr result;
DCL_LOCK_STATE;
# if defined(AO_HAVE_load_acquire) && defined(AO_HAVE_store_release)
if (!EXPECT(AO_load_acquire(&GC_explicit_typing_initialized), TRUE)) {
LOCK();
if (!GC_explicit_typing_initialized) {
GC_init_explicit_typing();
AO_store_release(&GC_explicit_typing_initialized, TRUE);
}
UNLOCK();
}
# else
LOCK();
if (!EXPECT(GC_explicit_typing_initialized, TRUE)) {
GC_init_explicit_typing();
GC_explicit_typing_initialized = TRUE;
}
UNLOCK();
# endif
while (last_set_bit >= 0 && !GC_get_bit(bm, last_set_bit))
last_set_bit--;
if (last_set_bit < 0) return(0 /* no pointers */);
# if ALIGNMENT == CPP_WORDSZ/8
{
signed_word i;
for (i = 0; i < last_set_bit; i++) {
if (!GC_get_bit(bm, i)) {
break;
}
}
if (i == last_set_bit) {
/* An initial section contains all pointers. Use length descriptor. */
return (WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
}
}
# endif
if ((word)last_set_bit < BITMAP_BITS) {
signed_word i;
/* Hopefully the common case. */
/* Build bitmap descriptor (with bits reversed) */
result = SIGNB;
for (i = last_set_bit - 1; i >= 0; i--) {
result >>= 1;
if (GC_get_bit(bm, i)) result |= SIGNB;
}
result |= GC_DS_BITMAP;
} else {
signed_word index = GC_add_ext_descriptor(bm, (word)last_set_bit + 1);
if (index == -1) return(WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
/* Out of memory: use conservative */
/* approximation. */
result = GC_MAKE_PROC(GC_typed_mark_proc_index, (word)index);
}
return result;
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_explicitly_typed(size_t lb,
GC_descr d)
{
word *op;
size_t lg;
GC_ASSERT(GC_explicit_typing_initialized);
if (EXPECT(0 == lb, FALSE)) lb = 1; /* ensure nwords > 1 */
lb = SIZET_SAT_ADD(lb, TYPD_EXTRA_BYTES);
op = (word *)GC_malloc_kind(lb, GC_explicit_kind);
if (EXPECT(NULL == op, FALSE))
return NULL;
/* It is not safe to use GC_size_map[lb] to compute lg here as */
/* the former might be updated asynchronously. */
lg = BYTES_TO_GRANULES(GC_size(op));
set_obj_descr(op, GRANULES_TO_WORDS(lg), d);
GC_dirty(op + GRANULES_TO_WORDS(lg) - 1);
REACHABLE_AFTER_DIRTY(d);
return op;
}
/* We make the GC_clear_stack() call a tail one, hoping to get more of */
/* the stack. */
#define GENERAL_MALLOC_IOP(lb, k) \
GC_clear_stack(GC_generic_malloc_ignore_off_page(lb, k))
GC_API GC_ATTR_MALLOC void * GC_CALL
GC_malloc_explicitly_typed_ignore_off_page(size_t lb, GC_descr d)
{
ptr_t op;
size_t lg;
DCL_LOCK_STATE;
GC_ASSERT(GC_explicit_typing_initialized);
if (EXPECT(0 == lb, FALSE)) lb = 1;
lb = SIZET_SAT_ADD(lb, TYPD_EXTRA_BYTES);
if (SMALL_OBJ(lb)) {
void **opp;
GC_DBG_COLLECT_AT_MALLOC(lb);
LOCK();
lg = GC_size_map[lb];
opp = &GC_obj_kinds[GC_explicit_kind].ok_freelist[lg];
op = (ptr_t)(*opp);
if (EXPECT(0 == op, FALSE)) {
UNLOCK();
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
if (0 == op) return 0;
/* See the comment in GC_malloc_explicitly_typed. */
lg = BYTES_TO_GRANULES(GC_size(op));
} else {
*opp = obj_link(op);
obj_link(op) = 0;
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
UNLOCK();
}
} else {
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
if (NULL == op) return NULL;
lg = BYTES_TO_GRANULES(GC_size(op));
}
set_obj_descr(op, GRANULES_TO_WORDS(lg), d);
GC_dirty((word *)op + GRANULES_TO_WORDS(lg) - 1);
REACHABLE_AFTER_DIRTY(d);
return op;
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_calloc_explicitly_typed(size_t n,
size_t lb, GC_descr d)
{
word *op;
size_t lg;
GC_descr simple_descr;
complex_descriptor *complex_descr;
int descr_type;
struct LeafDescriptor leaf;
DCL_LOCK_STATE;
GC_ASSERT(GC_explicit_typing_initialized);
if (EXPECT(0 == lb || 0 == n, FALSE)) lb = n = 1;
if ((lb | n) > GC_SQRT_SIZE_MAX /* fast initial check */
&& n > GC_SIZE_MAX / lb)
return (*GC_get_oom_fn())(GC_SIZE_MAX); /* n*lb overflow */
descr_type = GC_make_array_descriptor((word)n, (word)lb, d, &simple_descr,
&complex_descr, &leaf);
lb *= n;
switch(descr_type) {
case NO_MEM: return(0);
case SIMPLE:
return GC_malloc_explicitly_typed(lb, simple_descr);
case LEAF:
lb = SIZET_SAT_ADD(lb,
sizeof(struct LeafDescriptor) + TYPD_EXTRA_BYTES);
break;
case COMPLEX:
lb = SIZET_SAT_ADD(lb, TYPD_EXTRA_BYTES);
break;
}
op = (word *)GC_malloc_kind(lb, GC_array_kind);
if (EXPECT(NULL == op, FALSE))
return NULL;
lg = BYTES_TO_GRANULES(GC_size(op));
if (descr_type == LEAF) {
/* Set up the descriptor inside the object itself. */
struct LeafDescriptor * lp =
(struct LeafDescriptor *)
(op + GRANULES_TO_WORDS(lg)
- (BYTES_TO_WORDS(sizeof(struct LeafDescriptor)) + 1));
lp -> ld_tag = LEAF_TAG;
lp -> ld_size = leaf.ld_size;
lp -> ld_nelements = leaf.ld_nelements;
lp -> ld_descriptor = leaf.ld_descriptor;
/* Hold the allocation lock while writing the descriptor word */
/* to the object to ensure that the descriptor contents are */
/* seen by GC_array_mark_proc as expected. */
/* TODO: It should be possible to replace locking with the */
/* atomic operations (with the release barrier here) but, in */
/* this case, avoiding the acquire barrier in */
/* GC_array_mark_proc seems to be tricky as GC_mark_some might */
/* be invoked with the world running. */
LOCK();
op[GRANULES_TO_WORDS(lg) - 1] = (word)lp;
UNLOCK();
} else {
# ifndef GC_NO_FINALIZATION
size_t lw = GRANULES_TO_WORDS(lg);
LOCK();
op[lw - 1] = (word)complex_descr;
UNLOCK();
GC_dirty(op + lw - 1);
REACHABLE_AFTER_DIRTY(complex_descr);
/* Make sure the descriptor is cleared once there is any danger */
/* it may have been collected. */
if (EXPECT(GC_general_register_disappearing_link(
(void **)(op + lw - 1), op)
== GC_NO_MEMORY, FALSE))
# endif
{
/* Couldn't register it due to lack of memory. Punt. */
return (*GC_get_oom_fn())(lb);
}
}
return op;
}
|