1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
#ifndef E_INTERVAL_TREE
#define E_INTERVAL_TREE
#include "GBase.h"
#include "GVec.hh"
// This is an interval tree implementation based on red-black-trees
// as described in the book _Introduction_To_Algorithms_ by Cormen, Leisserson, and Rivest.
class GIntervalTreeNode {
friend class GIntervalTree;
protected:
GSeg* storedInterval;
int key;
int high;
int maxHigh;
int red; /* if red=0 then the node is black */
GIntervalTreeNode* left;
GIntervalTreeNode* right;
GIntervalTreeNode* parent;
public:
void Print(GIntervalTreeNode* nil,
GIntervalTreeNode* root) const {
printf(", k=%i, h=%i, mH=%i",key,high,maxHigh);
printf(" l->key=");
if( left == nil) printf("NULL"); else printf("%i",left->key);
printf(" r->key=");
if( right == nil) printf("NULL"); else printf("%i",right->key);
printf(" p->key=");
if( parent == root) printf("NULL"); else printf("%i",parent->key);
printf(" red=%i\n",red);
}
GIntervalTreeNode():storedInterval(NULL), key(0), high(0),maxHigh(0),red(0),
left(NULL), right(NULL), parent(NULL) {}
GIntervalTreeNode(GSeg * newInterval): storedInterval (newInterval),
key(newInterval->start), high(newInterval->end) ,
maxHigh(high), red(0), left(NULL), right(NULL), parent(NULL) { }
~GIntervalTreeNode() {}
};
struct G_ITRecursionNode {
public:
// this structure stores the information needed when we take the
// right branch in searching for intervals but possibly come back
// and check the left branch as well.
GIntervalTreeNode * start_node;
unsigned int parentIndex;
int tryRightBranch;
} ;
class GIntervalTree {
private:
unsigned int recursionNodeStackSize;
G_ITRecursionNode * recursionNodeStack;
unsigned int currentParent;
unsigned int recursionNodeStackTop;
protected:
// A sentinel is used for root and for nil. root->left should always
// point to the node which is the root of the tree. nil points to a
// node which should always be black but has arbitrary children and
// parent and no key or info; These sentinels are used so
// that the root and nil nodes do not require special treatment in the code
GIntervalTreeNode* root;
GIntervalTreeNode* nil;
// INPUT: the node to rotate on
// Rotates as described in _Introduction_To_Algorithms by
// Cormen, Leiserson, Rivest (Chapter 14). Basically this
// makes the parent of x be to the left of x, x the parent of
// its parent before the rotation and fixes other pointers
// accordingly. Also updates the maxHigh fields of x and y
// after rotation.
void LeftRotate(GIntervalTreeNode* x) {
GIntervalTreeNode* y;
// originally wrote this function to use the sentinel for
// nil to avoid checking for nil. However this introduces a
// very subtle bug because sometimes this function modifies
// the parent pointer of nil. This can be a problem if a
// function which calls LeftRotate also uses the nil sentinel
// and expects the nil sentinel's parent pointer to be unchanged
// after calling this function. For example, when DeleteFixUP
// calls LeftRotate it expects the parent pointer of nil to be
// unchanged.
y=x->right;
x->right=y->left;
if (y->left != nil) y->left->parent=x; // used to use sentinel here
// and do an unconditional assignment instead of testing for nil
y->parent=x->parent;
// instead of checking if x->parent is the root as in the book, we
// count on the root sentinel to implicitly take care of this case
if( x == x->parent->left) {
x->parent->left=y;
} else {
x->parent->right=y;
}
y->left=x;
x->parent=y;
x->maxHigh=GMAX(x->left->maxHigh, GMAX(x->right->maxHigh,x->high));
y->maxHigh=GMAX(x->maxHigh,GMAX(y->right->maxHigh,y->high));
}
// make the parent of x be to the left of x, x the parent of
// its parent before the rotation and fixes other pointers
// accordingly. Also updates the maxHigh fields of x and y
// after rotation.
void RightRotate(GIntervalTreeNode*y) {
GIntervalTreeNode* x;
x=y->left;
y->left=x->right;
if (nil != x->right) x->right->parent=y; //used to use sentinel here
// and do an unconditional assignment instead of testing for nil
// instead of checking if x->parent is the root as in the book, we
// count on the root sentinel to implicitly take care of this case
x->parent=y->parent;
if( y == y->parent->left) {
y->parent->left=x;
} else {
y->parent->right=x;
}
x->right=y;
y->parent=x;
y->maxHigh=GMAX(y->left->maxHigh,GMAX(y->right->maxHigh,y->high));
x->maxHigh=GMAX(x->left->maxHigh,GMAX(y->maxHigh,x->high));
}
// Inserts z into the tree as if it were a regular binary tree
// using the algorithm described in _Introduction_To_Algorithms_
// by Cormen et al. This function is only intended to be called
// by the InsertTree function and not by the user
void TreeInsertHelp(GIntervalTreeNode* z) {
// this should only be called by the Insert method
GIntervalTreeNode* x;
GIntervalTreeNode* y;
z->left=z->right=nil;
y=root;
x=root->left;
while( x != nil) {
y=x;
if ( x->key > z->key) {
x=x->left;
} else { // x->key <= z->key
x=x->right;
}
}
z->parent=y;
if ( (y == root) ||
(y->key > z->key) ) {
y->left=z;
} else {
y->right=z;
}
#if defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not red in ITTreeInsertHelp");
Assert((nil->maxHigh=MIN_INT),
"nil->maxHigh != MIN_INT in ITTreeInsertHelp");
#endif
}
void TreePrintHelper(GIntervalTreeNode* x) const {
if (x != nil) {
TreePrintHelper(x->left);
x->Print(nil,root);
TreePrintHelper(x->right);
}
}
// FUNCTION: FixUpMaxHigh
// INPUTS: x is the node to start from
// EFFECTS: Travels up to the root fixing the maxHigh fields after
// an insertion or deletion
void FixUpMaxHigh(GIntervalTreeNode* x) {
while(x != root) {
x->maxHigh=GMAX(x->high,GMAX(x->left->maxHigh,x->right->maxHigh));
x=x->parent;
}
}
// FUNCTION: DeleteFixUp
// INPUTS: x is the child of the spliced
// out node in DeleteNode.
// EFFECT: Performs rotations and changes colors to restore red-black
// properties after a node is deleted
void DeleteFixUp(GIntervalTreeNode* x) {
GIntervalTreeNode * w;
GIntervalTreeNode * rootLeft = root->left;
while( (!x->red) && (rootLeft != x)) {
if (x == x->parent->left) {
w=x->parent->right;
if (w->red) {
w->red=0;
x->parent->red=1;
LeftRotate(x->parent);
w=x->parent->right;
}
if ( (!w->right->red) && (!w->left->red) ) {
w->red=1;
x=x->parent;
} else {
if (!w->right->red) {
w->left->red=0;
w->red=1;
RightRotate(w);
w=x->parent->right;
}
w->red=x->parent->red;
x->parent->red=0;
w->right->red=0;
LeftRotate(x->parent);
x=rootLeft; // this is to exit while loop
}
} else { // the code below is has left and right switched from above
w=x->parent->left;
if (w->red) {
w->red=0;
x->parent->red=1;
RightRotate(x->parent);
w=x->parent->left;
}
if ( (!w->right->red) && (!w->left->red) ) {
w->red=1;
x=x->parent;
} else {
if (!w->left->red) {
w->right->red=0;
w->red=1;
LeftRotate(w);
w=x->parent->left;
}
w->red=x->parent->red;
x->parent->red=0;
w->left->red=0;
RightRotate(x->parent);
x=rootLeft; // this is to exit while loop
}
}
}
x->red=0;
}
// Make sure the maxHigh fields for everything makes sense.
void CheckMaxHighFields(GIntervalTreeNode * x) const {
if (x != nil) {
CheckMaxHighFields(x->left);
if(!(CheckMaxHighFieldsHelper(x,x->maxHigh,0) > 0)) {
GEXIT("Error found in CheckMaxHighFields.\n");
}
CheckMaxHighFields(x->right);
}
}
int CheckMaxHighFieldsHelper(GIntervalTreeNode * y,
const int currentHigh,
int match) const {
if (y != nil) {
match = CheckMaxHighFieldsHelper(y->left,currentHigh,match) ?
1 : match;
GVERIFY(y->high <= currentHigh);
if (y->high == currentHigh)
match = 1;
match = CheckMaxHighFieldsHelper(y->right,currentHigh,match) ?
1 : match;
}
return match;
}public:
GIntervalTree():recursionNodeStackSize(128),
recursionNodeStack(NULL), currentParent(0), recursionNodeStackTop(1),
root(new GIntervalTreeNode), nil(new GIntervalTreeNode) {
//nil = new IntervalTreeNode;
nil->left = nil->right = nil->parent = nil;
nil->red = 0;
nil->key = nil->high = nil->maxHigh = INT_MIN;
nil->storedInterval = NULL;
//root = new IntervalTreeNode;
root->parent = root->left = root->right = nil;
root->key = root->high = root->maxHigh = INT_MAX;
root->red=0;
root->storedInterval = NULL;
/* the following are used for the Enumerate function */
//recursionNodeStackSize = 128;
GMALLOC(recursionNodeStack, recursionNodeStackSize*sizeof(G_ITRecursionNode));
//recursionNodeStackTop = 1;
recursionNodeStack[0].start_node = NULL;
}
~GIntervalTree() {
GIntervalTreeNode * x = root->left;
GVec<GIntervalTreeNode *> stuffToFree;
if (x != nil) {
if (x->left != nil) {
stuffToFree.Push(x->left);
}
if (x->right != nil) {
stuffToFree.Push(x->right);
}
// delete x->storedInterval;
delete x;
while( stuffToFree.Count()>0 ) {
x = stuffToFree.Pop();
if (x->left != nil) {
stuffToFree.Push(x->left);
}
if (x->right != nil) {
stuffToFree.Push(x->right);
}
// delete x->storedInterval;
delete x;
}
}
delete nil;
delete root;
GFREE(recursionNodeStack);
}
void Print() const { TreePrintHelper(root->left); }
// FUNCTION: DeleteNode
//
// INPUTS: tree is the tree to delete node z from
// OUTPUT: returns the Interval stored at deleted node
// EFFECT: Deletes z from tree and but don't call destructor
// Then calls FixUpMaxHigh to fix maxHigh fields then calls
// DeleteFixUp to restore red-black properties
GSeg* DeleteNode(GIntervalTreeNode* z) {
GIntervalTreeNode* y;
GIntervalTreeNode* x;
GSeg* returnValue = z->storedInterval;
y= ((z->left == nil) || (z->right == nil)) ? z : GetSuccessorOf(z);
x= (y->left == nil) ? y->right : y->left;
if (root == (x->parent = y->parent)) { // assignment of y->p to x->p is intentional
root->left=x;
} else {
if (y == y->parent->left) {
y->parent->left=x;
} else {
y->parent->right=x;
}
}
if (y != z) { // y should not be nil in this case
#ifdef DEBUG_ASSERT
Assert( (y!=nil),"y is nil in DeleteNode \n");
#endif
// y is the node to splice out and x is its child
y->maxHigh = INT_MIN;
y->left=z->left;
y->right=z->right;
y->parent=z->parent;
z->left->parent=z->right->parent=y;
if (z == z->parent->left) {
z->parent->left=y;
} else {
z->parent->right=y;
}
FixUpMaxHigh(x->parent);
if (!(y->red)) {
y->red = z->red;
DeleteFixUp(x);
} else
y->red = z->red;
delete z;
} else {
FixUpMaxHigh(x->parent);
if (!(y->red)) DeleteFixUp(x);
delete y;
}
return returnValue;
}
// Before calling InsertNode the node x should have its key set
// FUNCTION: InsertNode
// INPUT: newInterval is the interval to insert
// OUTPUT: This function returns a pointer to the newly inserted node
// which is guaranteed to be valid until this node is deleted.
// What this means is if another data structure stores this
// pointer then the tree does not need to be searched when this
// is to be deleted.
// EFFECTS: Creates a node node which contains the appropriate key and
// info pointers and inserts it into the tree.
GIntervalTreeNode * Insert(GSeg* newInterval) {
GIntervalTreeNode* y;
GIntervalTreeNode* newNode;
GIntervalTreeNode* x = new GIntervalTreeNode(newInterval);
TreeInsertHelp(x);
FixUpMaxHigh(x->parent);
newNode = x;
x->red=1;
while(x->parent->red) { // use sentinel instead of checking for root
if (x->parent == x->parent->parent->left) {
y=x->parent->parent->right;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->right) {
x=x->parent;
LeftRotate(x);
}
x->parent->red=0;
x->parent->parent->red=1;
RightRotate(x->parent->parent);
}
} else { // case for x->parent == x->parent->parent->right
// this part is just like the section above with
// left and right interchanged
y=x->parent->parent->left;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->left) {
x=x->parent;
RightRotate(x);
}
x->parent->red=0;
x->parent->parent->red=1;
LeftRotate(x->parent->parent);
}
}
}
root->left->red=0;
return(newNode);
}
// FUNCTION: GetSuccessorOf
// INPUTS: x is the node we want the successor of
// OUTPUT: This function returns the successor of x or NULL if no
// successor exists.
GIntervalTreeNode * GetPredecessorOf(GIntervalTreeNode* x) const {
GIntervalTreeNode* y;
if (nil != (y = x->right)) { // assignment to y is intentional
while(y->left != nil) { // returns the minium of the right subtree of x
y=y->left;
}
return(y);
} else {
y=x->parent;
while(x == y->right) { // sentinel used instead of checking for nil
x=y;
y=y->parent;
}
if (y == root) return(nil);
return(y);
}
}
// FUNCTION: GetPredecessorOf
// INPUTS: x is the node to get predecessor of
// OUTPUT: This function returns the predecessor of x or NULL if no
// predecessor exists.
GIntervalTreeNode * GetSuccessorOf(GIntervalTreeNode* x) const {
GIntervalTreeNode* y;
if (nil != (y = x->left)) { // assignment to y is intentional
while(y->right != nil) { // returns the maximum of the left subtree of x
y=y->right;
}
return(y);
} else {
y=x->parent;
while(x == y->left) {
if (y == root) return(nil);
x=y;
y=y->parent;
}
return(y);
}
}
// FUNCTION: Enumerate
// INPUTS: tree is the tree to look for intervals overlapping the
// closed interval [low,high]
// OUTPUT: stack containing pointers to the nodes overlapping
// [low,high]
// EFFECT: Returns a stack containing pointers to nodes containing
// intervals which overlap [low,high] in O(max(N,k*log(N)))
// where N is the number of intervals in the tree and k is
// the number of overlapping intervals
// Note: This basic idea for this function comes from the
// _Introduction_To_Algorithms_ book by Cormen et al, but
// modifications were made to return all overlapping intervals
// instead of just the first overlapping interval as in the
// book. The natural way to do this would require recursive
// calls of a basic search function. I translated the
// recursive version into an iterative version with a stack
// as described below.
// The basic idea for the function below is to take the IntervalSearch
// function from the book and modify to find all overlapping intervals
// instead of just one. This means that any time we take the left
// branch down the tree we must also check the right branch if and only if
// we find an overlapping interval in that left branch. Note this is a
// recursive condition because if we go left at the root then go left
// again at the first left child and find an overlap in the left subtree
// of the left child of root we must recursively check the right subtree
// of the left child of root as well as the right child of root.
GVec<GSeg*> * Enumerate(int low, int high) {
GVec<GSeg*> * enumResultStack;
GIntervalTreeNode* x=root->left;
int stuffToDo = (x != nil);
// Possible speed up: add min field to prune right searches
#ifdef DEBUG_ASSERT
Assert((recursionNodeStackTop == 1),
"recursionStack not empty when entering IntervalTree::Enumerate");
#endif
currentParent = 0;
enumResultStack = new GVec<GSeg*>(4);
while(stuffToDo) {
//if (Overlap(low,high,x->key,x->high) ) {
if (low<=x->high && x->key<=high) {
enumResultStack->Push(x->storedInterval);
recursionNodeStack[currentParent].tryRightBranch=1;
}
if(x->left->maxHigh >= low) { // implies x != nil
if ( recursionNodeStackTop == recursionNodeStackSize ) {
recursionNodeStackSize *= 2;
recursionNodeStack = (G_ITRecursionNode *)
realloc(recursionNodeStack,
recursionNodeStackSize * sizeof(G_ITRecursionNode));
if (recursionNodeStack == NULL)
GEXIT("realloc failed in IntervalTree::Enumerate\n");
}
recursionNodeStack[recursionNodeStackTop].start_node = x;
recursionNodeStack[recursionNodeStackTop].tryRightBranch = 0;
recursionNodeStack[recursionNodeStackTop].parentIndex = currentParent;
currentParent = recursionNodeStackTop++;
x = x->left;
} else {
x = x->right;
}
stuffToDo = (x != nil);
while( (!stuffToDo) && (recursionNodeStackTop > 1) ) {
if(recursionNodeStack[--recursionNodeStackTop].tryRightBranch) {
x=recursionNodeStack[recursionNodeStackTop].start_node->right;
currentParent=recursionNodeStack[recursionNodeStackTop].parentIndex;
recursionNodeStack[currentParent].tryRightBranch=1;
stuffToDo = ( x != nil);
}
}
}
#ifdef DEBUG_ASSERT
Assert((recursionNodeStackTop == 1),
"recursionStack not empty when exiting IntervalTree::Enumerate");
#endif
return(enumResultStack);
}
};
#endif
|