File: gff.h

package info (click to toggle)
libgclib 0.12.7%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,364 kB
  • sloc: cpp: 25,739; makefile: 58; sh: 20
file content (1486 lines) | stat: -rw-r--r-- 52,083 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
#ifndef GFF_H
#define GFF_H

//#define CUFFLINKS 1

#include "GBase.h"
#include "gdna.h"
#include "codons.h"
#include "GFaSeqGet.h"
#include "GList.hh"
#include "GHashMap.hh"
#include "GBitVec.h"

#ifdef CUFFLINKS
#include <boost/crc.hpp>  // for boost::crc_32_type
#endif

//reserved Gffnames::feats entries -- basic feature types
extern int gff_fid_mRNA; // "mRNA" feature name
extern int gff_fid_transcript; // *RNA, *transcript feature name
extern int gff_fid_exon;
extern int gff_fid_CDS;

extern const uint GFF_MAX_LOCUS;
extern const uint GFF_MAX_EXON;
extern const uint GFF_MAX_INTRON;
//extern const uint gfo_flag_LEVEL_MSK; //hierarchical level: 0 = no parent
//extern const byte gfo_flagShift_LEVEL;

//extern bool gff_show_warnings;

#define GFF_LINELEN 4096
#define ERR_NULL_GFNAMES "Error: GffObj::%s requires a non-null GffNames* names!\n"


enum GffExonType {
  exgffIntron=-1, // useless "intron" feature
  exgffNone=0,  //not recognizable or unitialized exonic segment
  exgffStartCodon, //from "start_codon" feature (within CDS)
  exgffStopCodon, //from "stop_codon" feature (may be outside CDS, but should)
  exgffCDS,  //from "CDS" feature
  exgffUTR,  //from "UTR" feature
  exgffCDSUTR, //from a merge of UTR and CDS feature
  exgffExon, //from "exon" feature
};

extern const char* exonTypes[];

const char* strExonType(char xtype);
class GfList;

typedef void GFFCommentParser(const char* cmline, GfList* gflst); //comment parser callback
//Useful for parsing/maintaining ref seq info from comment lines like this:
//##sequence-region chr1 1 24895642

class GffReader;
class GffObj;

//---transcript overlapping - utility functions

extern const byte CLASSCODE_OVL_RANK; //rank value just above 'o' class code

byte classcode_rank(char c); //returns priority value for class codes

struct TOvlData {
	char ovlcode;
	int ovlen;
	int16_t numJmatch; //number of matching junctions (not introns)
	GBitVec jbits; //bit array with 1 bit for each junctions (total = 2 * num_introns)
	TOvlData(char oc=0, int olen=0, int16_t nmj=0, GBitVec* jb=NULL):ovlcode(oc),
			ovlen(olen),numJmatch(nmj),jbits(jb) { }
};

TOvlData getOvlData(GffObj& m, GffObj& r, bool stricterMatch=false, int trange=0);

char transcriptMatch(GffObj& a, GffObj& b, int& ovlen, int trange=0); //generic transcript match test
// -- return '=', '~'  or 0
char singleExonTMatch(GffObj& m, GffObj& r, int& ovlen, int trange=0);
//single-exon transcript match test - returning '=', '~'  or 0

//---
// -- tracking exon/CDS segments from local mRNA to genome coordinates
class GMapSeg:public GSeg {
public:
	uint gstart; //genome start location
	uint gend;   //genome end location
	//gend<gstart when mapped on reverse strand !
	GMapSeg(uint s=0, uint e=0, uint gs=0, uint ge=0):GSeg(s,e),
			 gstart(gs), gend(ge) {};
    int g_within(uint gc) {
    	//return 0 if not within gstart-gend intervals
    	//or offset from gstart otherwise (always positive)
    	if (gstart>gend) { //reverse strand mapping
    		if  (gc<gend || gc>gstart) return 0;
			return (gstart-gc);
    	}
    	else {
    		if (gc<gstart || gc>gend) return 0;
    		return (gc-gstart);
    	}
    }
};

struct GffScore {
	float score;
	int8_t precision;
	GffScore(float sc=0, int8_t prec=-1):score(sc),precision(prec) { }
	void print(FILE* outf) {
		if (precision<0) fprintf(outf, ".");
		else fprintf(outf, "%.*f", precision, score);
	}
	void sprint(char* outs) {
		if (precision<0) sprintf(outs, ".");
		else sprintf(outs, "%.*f", precision, score);
	}
	bool operator<(GffScore& v) {
		return this->score<v.score;
	}
	bool operator<=(GffScore& v) {
		return this->score<=v.score;
	}
	bool operator>(GffScore& v) {
		return this->score>v.score;
	}
	bool operator>=(GffScore& v) {
		return this->score>=v.score;
	}
	bool operator==(GffScore& v) {
		return this->score==v.score;
	}
};

extern const GffScore GFFSCORE_NONE;

class GMapSegments:public GVec<GMapSeg> {
  public:
	int dir; //-1 or +1 (reverse/forward for genome coordinates)
	GSeg lreg; // always 1,max local coord
	GSeg greg; // genomic min,max coords
	GMapSegments(char strand='+'):lreg(0,0),greg(0,0) {
		dir=(strand=='-') ? -1 : 1;
	}
	void Clear(char strand='+') {
		lreg.start=0;lreg.end=0;
		greg.start=0;greg.end=0;
		dir = (strand=='-') ? -1 : 1;;
		GVec<GMapSeg>::Clear();
	}
    int add(uint s, uint e, uint gs, uint ge) {
    	if (dir<0) {
    		if (gs<ge) {
    			Gswap(gs, ge);
    		}
    		if (gs>greg.end) greg.end=gs;
    		if (ge<greg.start || greg.start==0) greg.start=ge;
    	} else {
    		if (ge>greg.end) greg.end=ge;
    		if (gs<greg.start || greg.start==0) greg.start=gs;
    	}
    	GMapSeg gm(s, e, gs, ge);
		if (gm.end>lreg.end) lreg.end=gm.end;
		if (gm.start<lreg.start || lreg.start==0) lreg.start=gm.start;
    	return GVec<GMapSeg>::Add(gm);
    }
    uint gmap(uint lc) { //takes a local coordinate and returns its mapping to genomic coordinates
    	//returns 0 if mapping cannot be performed!
    	if (lc==0 || fCount==0 || lc<lreg.start || lc>lreg.end) return 0;
    	//find local segment containing this coord
    	int i=0;
    	while (i<fCount) {
    		if (lc>=fArray[i].start && lc<=fArray[i].end)
    			return (fArray[i].gstart+dir*(lc-fArray[i].start));
    		++i;
        }
    	return 0;
    }
    uint lmap(uint gc) { //takes a genome coordinate and returns its mapping to local coordinates
    	if (gc==0 || fCount==0 || gc<greg.start || gc>greg.end) return 0;
    	//find genomic segment containing this coord
    	int i=0;
    	while (i<fCount) {
    		int ofs=fArray[i].g_within(gc);
    		if (ofs!=0)
    			return (fArray[i].start+ofs);
    		++i;
        }
    	return 0;
    }
};

//reading a whole transcript from a BED-12 line
class BEDLine {
 public:
    bool skip;
    char* dupline; //duplicate of original line
    char* line; //this will have tabs replaced by \0
    int llen;
    char* gseqname;
    uint fstart;
    uint fend;
    char strand;
    char* ID; //transcript ID from BED-12 (4th column)
    char* info; //13th column - these could be GFF3 attributes
    uint cds_start;
    uint cds_end;
    char cds_phase;
    GVec<GSeg> exons;
    BEDLine(GffReader* r=NULL, const char* l=NULL);
    ~BEDLine() {
    	GFREE(dupline);
    	GFREE(line);
    }
};

class GffLine {
 protected:
    char* _parents; //stores a copy of the Parent attribute value,
       //with commas replaced by \0
    int _parents_len;
    bool parseSegmentList(GVec<GSeg>& segs, char* str);
 public:
    char* dupline; //duplicate of original line
    char* line; //this will have tabs replaced by \0
    int llen;
    char* gseqname;
    char* track;
    char* ftype; //feature name: mRNA/gene/exon/CDS
    int ftype_id;
    char* info; //the last, attributes' field, unparsed
    uint fstart;
    uint fend;
    /*
    uint qstart; //overlap coords on query, if available
    uint qend;
    uint qlen; //query len, if given
    */
    float score;
    int8_t score_decimals;
    char strand;
    union {
    	unsigned int flags;
    	struct {
    		bool is_exonlike:2; //CDS,codon, UTR, exon
    	};
    	struct {
    	    bool is_cds:1; //"cds" or "start/stop_codon" features
    	    bool is_exon:1; //"exon" and "utr" features
    	    bool is_transcript:1; //if current feature is *RNA or *transcript
    	    bool is_gene:1; //current feature is *gene
    	    //bool is_gff3:1; //line appears to be in GFF3 format (0=GTF)
    	    bool is_gtf_transcript:1; //GTF transcript line with Parents parsed from gene_id
    	    bool skipLine:1;
    	    bool gffWarnings:1;
    	    bool is_gene_segment:1; //for NCBI's D/J/V/C_gene_segment
    	};
    };
    int8_t exontype; // gffExonType
    char phase;  // '.' , '0', '1' or '2', can be also given as CDSphase attribute in TLF
    uint cds_start; //if TLF: CDS=start:end attribute
    uint cds_end;
    GVec<GSeg> exons; //if TLF: exons= attribute
    GVec<GSeg> cdss; //if TLF: CDS=segment_list attribute
    char* gene_name; //value of gene_name attribute (GTF) if present or Name attribute of a gene feature (GFF3)
    char* gene_id; //GTF only: value of "gene_id" attribute if present
    char** parents; //for GTF only parents[0] is used
    int num_parents;
    char* ID;     // if a ID=.. attribute was parsed, or a GTF with 'transcript' line (transcript_id)
    GffLine(GffReader* reader, const char* l); //parse the line accordingly
    void discardParent() {
    	GFREE(_parents);
    	_parents_len=0;
    	num_parents=0;
    	GFREE(parents);
    	parents=NULL;
    }
    void ensembl_GFF_ID_process(char*& id);
    void ensembl_GTF_ID_process(char*& id, const char* ver_attr);
    static char* extractGFFAttr(char*& infostr, const char* oline, const char* pre, bool caseStrict=false,
    		bool enforce_GTF2=false, int* rlen=NULL, bool deleteAttr=true);
    char* extractAttr(const char* pre, bool caseStrict=false, bool enforce_GTF2=false, int* rlen=NULL){
    	return extractGFFAttr(info, dupline, pre, caseStrict, enforce_GTF2, rlen, true);
    }
    char* getAttrValue(const char* pre, bool caseStrict=false, bool enforce_GTF2=false, int* rlen=NULL) {
    	return extractGFFAttr(info, dupline, pre, caseStrict, enforce_GTF2, rlen, false);
    }
    GffLine(GffLine& l): _parents(NULL), _parents_len(l._parents_len),
    		dupline(NULL), line(NULL), llen(l.llen), gseqname(NULL), track(NULL),
    		ftype(NULL), ftype_id(l.ftype_id), info(NULL), fstart(l.fstart), fend(l.fend),
			//qstart(l.fstart), qend(l.fend), qlen(l.qlen),
			score(l.score), score_decimals(l.score_decimals), strand(l.strand), flags(l.flags), exontype(l.exontype),
			phase(l.phase), cds_start(l.cds_start), cds_end(l.cds_end), exons(l.exons), cdss(l.cdss),
			gene_name(NULL), gene_id(NULL), parents(NULL), num_parents(l.num_parents), ID(NULL) {
    	//if (l==NULL || l->line==NULL)
    	//	GError("Error: invalid GffLine(l)\n");
    	//memcpy((void*)this, (void*)l, sizeof(GffLine));
    	GMALLOC(line, llen+1);
    	memcpy(line, l.line, llen+1);
    	GMALLOC(dupline, llen+1);
    	memcpy(dupline, l.dupline, llen+1);
    	//--offsets within line[]
    	gseqname=line+(l.gseqname-l.line);
    	track=line+(l.track-l.line);
    	ftype=line+(l.ftype-l.line);
    	info=line+(l.info-l.line);
    	if (num_parents>0 && parents) {
    		GMALLOC(parents, num_parents*sizeof(char*));
    		//_parents_len=l->_parents_len; copied above
    		_parents=NULL; //re-init, forget pointer copy
    		GMALLOC(_parents, _parents_len);
    		memcpy(_parents, l._parents, _parents_len);
    		for (int i=0;i<num_parents;i++) {
    			parents[i]=_parents+(l.parents[i] - l._parents);
    		}
    	}
    	//-- allocated string copies:
    	ID=Gstrdup(l.ID);
    	if (l.gene_name!=NULL)
    		gene_name=Gstrdup(l.gene_name);
    	if (l.gene_id!=NULL)
    		gene_id=Gstrdup(l.gene_id);
    }
    GffLine(): _parents(NULL), _parents_len(0),
    		dupline(NULL), line(NULL), llen(0), gseqname(NULL), track(NULL),
    		ftype(NULL), ftype_id(-1), info(NULL), fstart(0), fend(0), //qstart(0), qend(0), qlen(0),
    		score(0), score_decimals(-1), strand(0), flags(0), exontype(0), phase(0), cds_start(0), cds_end(0),
			exons(), cdss(),  gene_name(NULL), gene_id(NULL), parents(NULL), num_parents(0), ID(NULL) {
    }
    ~GffLine() {
    	GFREE(dupline);
    	GFREE(line);
    	GFREE(_parents);
    	GFREE(parents);
    	GFREE(ID);
    	GFREE(gene_name);
    	GFREE(gene_id);
    }
};

class GffAttr {
 public:
  union {
    int id_full;
    struct {
      bool      cds:1;
      int  attr_id:31;
    };
  };
  char* attr_val;
  GffAttr(int an_id, const char* av=NULL, bool is_cds=false):id_full(0), attr_val(NULL) {
	 attr_id=an_id;
     setValue(av, is_cds);
  }
  ~GffAttr() {
     GFREE(attr_val);
  }
  void setValue(const char* av, bool is_cds=false) {
     if (attr_val!=NULL) {
        GFREE(attr_val);
     }
     if (av==NULL || av[0]==0) return;
     //trim spaces
     const char* vstart=av;
     while (*vstart==' ') av++;
     const char* vend=vstart;
     bool keep_dq=false;
     while (vend[1]!=0) {
        if (*vend==' ' && vend[1]!=' ') keep_dq=true;
          else if (*vend==';') keep_dq=true;
        vend++;
     }
     //remove spaces at the end:
     while (*vend==' ' && vend!=vstart) vend--;
     //practical clean-up: if it doesn't have any internal spaces just strip those useless double quotes
     if (!keep_dq && *vstart=='"' && *vend=='"') {
               vend--;
               vstart++;
     }
     attr_val=Gstrdup(vstart, vend);
     cds=is_cds;
  }
  bool operator==(GffAttr& d){
      return (this==&d);
  }
  bool operator>(GffAttr& d){
     return (this>&d);
  }
  bool operator<(GffAttr& d){
    return (this<&d);
  }

 };

class GffNameList;
class GffNames;

class GffNameInfo {
  friend class GffNameList;
 public:
   int idx;
   char* name;
   GffNameInfo(const char* n=NULL):idx(-1),name(NULL) {
     if (n) name=Gstrdup(n);
     }

   ~GffNameInfo() {
      GFREE(name);
     }

   bool operator==(GffNameInfo& d){
       return (strcmp(this->name, d.name)==0);
       }
   bool operator<(GffNameInfo& d){
     return (strcmp(this->name, d.name)<0);
     }
};

class GffNameList:public GPVec<GffNameInfo> {
  friend class GffNameInfo;
  friend class GffNames;
protected:
  GHashMap<const char*, GffNameInfo*> byName;//hash with shared keys
  int idlast; //fList index of last added/reused name
  int addStatic(const char* tname) {// fast add
     GffNameInfo* f=new GffNameInfo(tname);
     idlast=this->Add(f);
     f->idx=idlast;
     byName.Add(f->name,f);
     return idlast;
     }
public:
 //GffNameList(int init_capacity=6):GList<GffNameInfo>(init_capacity, false,true,true), byName(false) {
  GffNameList(int init_capacity=6):GPVec<GffNameInfo>(init_capacity, true), byName(false) {
    idlast=-1;
    setCapacity(init_capacity);
    }
 char* lastNameUsed() { return idlast<0 ? NULL : Get(idlast)->name; }
 int lastNameId() { return idlast; }
 char* getName(int nid) { //retrieve name by its ID
   if (nid<0 || nid>=fCount)
         GError("GffNameList Error: invalid index (%d)\n",nid);
   return fList[nid]->name;
   }

 int addName(const char* tname) {//returns or create an id for the given name
   //check idlast first, chances are it's the same feature name checked
   /*if (idlast>=0 && strcmp(fList[idlast]->name,tname)==0)
       return idlast;*/
   GffNameInfo* f=byName.Find(tname);
   int fidx=-1;
   if (f!=NULL) fidx=f->idx;
     else {//add new entry
      f=new GffNameInfo(tname);
      fidx=this->Add(f);
      f->idx=fidx;
      byName.Add(f->name,f);
      }
   idlast=fidx;
   return fidx;
   }

 int addNewName(const char* tname) {
    GffNameInfo* f=new GffNameInfo(tname);
    int fidx=this->Add(f);
    f->idx=fidx;
    byName.Add(f->name,f);
    return fidx;
    }

 int getId(const char* tname) { //only returns a name id# if found
    GffNameInfo* f=byName.Find(tname);
    if (f==NULL) return -1;
    return f->idx;
    }
 int removeName() {
   GError("Error: removing names from GffNameList not allowed!\n");
   return -1;
   }
};

class GffNames {
 public:
   int numrefs;
   GffNameList tracks;
   GffNameList gseqs;
   GffNameList attrs;
   GffNameList feats; //feature names: 'mRNA', 'exon', 'CDS' etc.
   GffNames():tracks(),gseqs(),attrs(), feats() {
    numrefs=0;
    //the order below is critical!
    //has to match: gff_fid_mRNA, gff_fid_exon, gff_fid_CDS
    gff_fid_mRNA = feats.addStatic("mRNA");//index 0=gff_fid_mRNA
    gff_fid_transcript=feats.addStatic("transcript");//index 1=gff_fid_transcript
    gff_fid_exon=feats.addStatic("exon");//index 2=gff_fid_exon
    gff_fid_CDS=feats.addStatic("CDS"); //index 3=gff_fid_CDS
    }
};

void gffnames_ref(GffNames* &n);
void gffnames_unref(GffNames* &n);

enum GffPrintMode {
  pgtfAny, //print record as read, if GTF
  pgtfExon, //print only exon features (CDS converted to exon if exons are missing)
  pgtfCDS,  //print only CDS features
  pgtfBoth,  //print both CDS and exon features
  pgffAny, //print record as read (if isCDSonly() prints only CDS)
  pgffExon,
  pgffCDS,
  pgffBoth, //enforce exon printing if isCDSOnly()
  pgffTLF,  //exon and CDS data shown as additional GFF attributes
            //in the transcript line (Transcript Line Format)
            //every line has the whole transcript data
  pgffBED //print a BED line with all other GFF attributes in column 13
};


class GffAttrs:public GList<GffAttr> {
  public:
    GffAttrs():GList<GffAttr>(false,true,true) { }
    void add_if_new(GffNames* names, const char* attrname, const char* attrval) {
        //adding a new value without checking for cds status
        int nid=names->attrs.getId(attrname);
        if (nid>=0) { //attribute name found in the dictionary
           for (int i=0;i<Count();i++)
              if (nid==Get(i)->attr_id) { return; } //don't update existing
        }
        else { //adding attribute name to global attr name dictionary
           nid=names->attrs.addNewName(attrname);
        }
        this->Add(new GffAttr(nid, attrval));
    }

    void add_if_new(GffNames* names, const char* attrname, const char* attrval, bool is_cds) {
        int nid=names->attrs.getId(attrname);
        if (nid>=0) { //attribute name found in the dictionary
           for (int i=0;i<Count();i++)
              if (nid==Get(i)->attr_id && is_cds==Get(i)->cds) { return; } //don't update existing
        }
        else { //adding attribute name to global attr name dictionary
           nid=names->attrs.addNewName(attrname);
        }
        this->Add(new GffAttr(nid, attrval, is_cds));
    }

    void add_or_update(GffNames* names, const char* attrname, const char* val) {
    //adding a new value without checking for cds status
        int aid=names->attrs.getId(attrname);
        if (aid>=0) {
           //attribute found in the dictionary
           for (int i=0;i<Count();i++) {
              //do we have it?
              if (aid==Get(i)->attr_id) {
                  //update the existing value for this attribute
                  Get(i)->setValue(val);
                  return;
                  }
              }
        }
        else { //adding attribute name to global attr name dictionary
           aid=names->attrs.addNewName(attrname);
        }
        this->Add(new GffAttr(aid, val));
    }

    void add_or_update(GffNames* names, const char* attrname, const char* val, bool is_cds) {
      int aid=names->attrs.getId(attrname);
      if (aid>=0) {
         //attribute found in the dictionary
         for (int i=0;i<Count();i++) {
            //do we have it?
            if (aid==Get(i)->attr_id && Get(i)->cds==is_cds) {
                //update the existing value for this attribute
                Get(i)->setValue(val, is_cds);
                return;
                }
            }
      }
      else { //adding attribute name to global attr name dictionary
         aid=names->attrs.addNewName(attrname);
      }
      this->Add(new GffAttr(aid, val, is_cds));
    }

    int haveId(int attr_id, bool is_cds=false) {
        for (int i=0;i<Count();i++)
           if (attr_id==Get(i)->attr_id && Get(i)->cds==is_cds)
        	   return i;
        return -1;
    }

    int haveId(const char* attrname, GffNames* names, bool is_cds=false) {
    	int aid=names->attrs.getId(attrname);
    	if (aid>=0) {
            for (int i=0;i<Count();i++)
               if (aid==Get(i)->attr_id && Get(i)->cds==is_cds)
            	   return i;
    	}
    	return -1;
    }

    char* getAttr(GffNames* names, const char* attrname) {
      int aid=names->attrs.getId(attrname);
      if (aid>=0)
        for (int i=0;i<Count();i++)
          if (aid==Get(i)->attr_id) return Get(i)->attr_val;
      return NULL;
    }

    char* getAttr(GffNames* names, const char* attrname, bool is_cds) {
      int aid=names->attrs.getId(attrname);
      if (aid>=0)
        for (int i=0;i<Count();i++)
          if (aid==Get(i)->attr_id && Get(i)->cds==is_cds) return Get(i)->attr_val;
      return NULL;
    }

    char* getAttr(int aid) {
      if (aid>=0)
        for (int i=0;i<Count();i++)
          if (aid==Get(i)->attr_id) return Get(i)->attr_val;
      return NULL;
    }

    char* getAttr(int aid, bool is_cds) {
      if (aid>=0)
        for (int i=0;i<Count();i++)
          if (aid==Get(i)->attr_id && Get(i)->cds==is_cds)
            return Get(i)->attr_val;
      return NULL;
    }

    void copyAttrs(GffAttrs* attrs, bool is_cds=false) {
 	 //deep copy attributes from another GffAttrs list
     // (only the ones which do not exist yet)
    	if (attrs==NULL) return;
    	for (int i=0;i<attrs->Count();i++) {
    		int aid=attrs->Get(i)->attr_id;
    		if (haveId(aid, is_cds)<0)
    			Add(new GffAttr(aid, attrs->Get(i)->attr_val, is_cds));
    	}
    }
};

class GffExon : public GSeg {
 public:
  bool sharedAttrs; //do not free attrs on destruct!
  GffAttrs* attrs; //other attributes kept for this exon/CDS
  GffScore score; // gff score column
  int8_t exontype;
  char phase; //GFF phase column - for CDS segments only!
	             // '.' = undefined (UTR), '0','1','2' for CDS exons
  void* uptr; //for associating extended user data to this exon

  char* getAttr(GffNames* names, const char* atrname) {
    if (attrs==NULL || names==NULL || atrname==NULL) return NULL;
    return attrs->getAttr(names, atrname);
  }

  char* getAttr(int aid) {
    if (attrs==NULL) return NULL;
    return attrs->getAttr(aid);
  }
  GffExon(bool share_attributes):GSeg(0,0), sharedAttrs(share_attributes), attrs(NULL), score(),
		  exontype(0), phase('.'), uptr(NULL){
  }
  GffExon(uint s=0, uint e=0, int8_t et=0, char ph='.', float sc=0, int8_t sc_prec=0):sharedAttrs(false), attrs(NULL),
		  score(sc,sc_prec), exontype(et), phase(ph), uptr(NULL) {
		if (s<e) { start=s; end=e; }
		    else { start=e; end=s; }

  } //constructor


  GffExon(const GffExon& ex):GSeg(ex.start, ex.end) { //copy constructor
      (*this)=ex; //use the default (shallow!) copy operator
      if (ex.attrs!=NULL) { //make a deep copy here
        attrs=new GffAttrs();
        attrs->copyAttrs(ex.attrs);
      }
  }

  GffExon& operator=(const GffExon& o) = default; //prevent gcc 9 warnings:
                                           //yes, I want a shallow copy here

  ~GffExon() { //destructor
     if (attrs!=NULL && !sharedAttrs) delete attrs;
  }

};

//only for mapping to spliced coding sequence:
class GffCDSeg:public GSeg {
 public:
  char phase;
  int exonidx;
};

//one GFF mRNA object -- e.g. a mRNA with its exons and/or CDS segments
class GffObj:public GSeg {
 protected:
   char* gffID; // ID name for mRNA (parent) feature
   char* gene_name; //value of gene_name attribute (GTF) if present or Name attribute of the parent gene feature (GFF3)
   char* geneID; //value of gene_id attribute (GTF) if present, or the ID attribute of a parent gene feature (GFF3)
   union {
      unsigned int flags;
      struct {
    	  bool flag_HAS_ERRORS        :1;
    	  bool flag_CHILDREN_PROMOTED :1;
    	  bool flag_IS_GENE           :1;
    	  bool flag_IS_TRANSCRIPT     :1;
    	  bool flag_HAS_GFF_ID        :1; //found transcript/RNA feature line (GFF3 or GTF2 with transcript line)
    	  bool flag_BY_EXON           :1; //created by subfeature (exon/CDS) directly
    	  bool flag_CDS_ONLY          :1; //transcript defined by CDS features only (GffObj::isCDS())
    	  bool flag_CDS_NOSTART       :1; //partial CDS at 5' end (no start codon)
    	  bool flag_CDS_NOSTOP        :1; //partial CDS at 3' end (no stop codon)
    	  bool flag_CDS_X             :1; //transcript having CDS with ribosomal shift (i.e. after merging exons)
    	                                  //CDS segments stored in ::cdss are incompatible with the exon segments
    	  bool flag_GENE_SEGMENT      :1; //a transcript-like C/D/J/V_gene_segment (NCBI's annotation)
    	  bool flag_TRANS_SPLICED     :1;
    	  bool flag_DISCONTINUOUS     :1; //discontinuous feature (e.g. cDNA_match) segments linked by same ID
    	  bool flag_TARGET_ONLY       :1; //Target= feature (e.g. from RepeatMasker output), lacks ID
    	  bool flag_DISCARDED         :1; //it will be  discarded from the final GffReader list
    	  bool flag_LST_KEEP          :1; //controlled by isUsed(); if set, this GffObj will not be
    	                                  //deallocated when GffReader is destroyed
    	  bool flag_FINALIZED         :1; //if finalize() was already called for this GffObj
    	  unsigned int gff_level      :4; //hierarchical level (0..15)
      };
   };
   //-- friends:
   friend class GffReader;
   friend class GffExon;
public:
  static GffNames* names; // dictionary storage that holds the various attribute names etc.
  int track_id; // index of track name in names->tracks
  int gseq_id; // index of genomic sequence name in names->gseqs
  int ftype_id; // index of this record's feature name in names->feats, or the special gff_fid_mRNA value
  int subftype_id; //index of child subfeature name in names->feats (subfeatures stored in "exons")
                   //if ftype_id==gff_fid_mRNA then this value is ignored
  GList<GffExon> exons; //for non-mRNA entries, these can be any subfeature of type subftype_id
  GList<GffExon>* cdss; //only !NULL for cases of "programmed frameshift" when CDS boundaries do not match
                      //exons boundaries
  GPVec<GffObj> children;
  GffObj* parent;
  int udata; //user data, flags etc.
  void* uptr; //user pointer (to a parent object, cluster, locus etc.)
  GffObj* ulink; //link to another GffObj (user controlled field)
  //---mRNA specific fields:
  //bool isCDS; //just a CDS, no UTRs
  uint CDstart; //CDS lowest coordinate
  uint CDend;   //CDS highest coordinate
  char CDphase; //initial phase for CDS start ('.','0'..'2')
                //CDphase is at CDend if strand=='-'
  static void decodeHexChars(char* dbuf, const char* s, int maxlen=1023);
  bool hasErrors() { return flag_HAS_ERRORS; }
  void hasErrors(bool v) { flag_HAS_ERRORS=v; }
  bool hasGffID() { return flag_HAS_GFF_ID; }
  void hasGffID(bool v) {flag_HAS_GFF_ID=v; }
  bool createdByExon() { return flag_BY_EXON; }
  void createdByExon(bool v) {flag_BY_EXON=v; }
  bool isCDSOnly() { return flag_CDS_ONLY; }
  void isCDSOnly(bool v) {  flag_CDS_ONLY=v; }
  bool isXCDS() { return flag_CDS_X; }
  void isXCDS(bool v) {  flag_CDS_X=v; }
  bool isFinalized() {  return flag_FINALIZED; }
  void isFinalized(bool v) {  flag_FINALIZED=v; }

  bool isGene() { return flag_IS_GENE; }
  void isGene(bool v) {flag_IS_GENE=v; }
  bool isDiscarded() { return flag_DISCARDED; }
  void isDiscarded(bool v) { flag_DISCARDED=v; }
  bool isUsed() { return flag_LST_KEEP; }
  void isUsed(bool v) {flag_LST_KEEP=v; }
  bool isTranscript() { return flag_IS_TRANSCRIPT; }
  void isTranscript(bool v) {flag_IS_TRANSCRIPT=v; }
  bool isGeneSegment() { return flag_GENE_SEGMENT; }
  void isGeneSegment(bool v) {flag_GENE_SEGMENT=v; }
  bool promotedChildren() { return flag_CHILDREN_PROMOTED; }
  void promotedChildren(bool v) { flag_CHILDREN_PROMOTED=v; }
  void setLevel(byte v) { gff_level=v; }
  byte getLevel() { return gff_level; }
  byte incLevel() { gff_level++; return gff_level; }

  bool isValidTranscript() {
    //return (ftype_id==gff_fid_mRNA && exons.Count()>0);
    return (isTranscript() && exons.Count()>0);
  }

  //return the index of exon containing coordinate coord, or -1 if not
  int whichExon(uint coord, GList<GffExon>* segs=NULL);
  int readExon(GffReader& reader, GffLine& gl);

  int addExon(GList<GffExon>& segs, GffLine& gl, int8_t exontype_override=exgffNone); //add to cdss or exons

  int addExon(uint segstart, uint segend, int8_t exontype=exgffNone, char phase='.',
		      GffScore exon_score=GFFSCORE_NONE, GList<GffExon>* segs=NULL);

protected:
  bool reduceExonAttrs(GList<GffExon>& segs);
  //utility segment-merging function for addExon()
  void expandSegment(GList<GffExon>&segs, int oi, uint segstart, uint segend,
       int8_t exontype);
  bool processGeneSegments(GffReader* gfr); //for genes that have _gene_segment features (NCBI annotation)
  void transferCDS(GffExon* cds);
public:
  void removeExon(int idx);
  void removeExon(GffExon* p);
  char  strand; //'+', '-' or '.'
  GffScore gscore;
  int covlen; //total coverage of reference genomic sequence (sum of maxcf segment lengths)
  GffAttrs* attrs; //other gff3 attributes found for the main mRNA feature
   //constructor by gff line parsing:
  GffObj(GffReader& gfrd, BEDLine& bedline);
  GffObj(GffReader& gfrd, GffLine& gffline);
   //if gfline->Parent!=NULL then this will also add the first sub-feature
   // otherwise, only the main feature is created
  void copyAttrs(GffObj* from);
  void clearAttrs() {
    if (attrs!=NULL) {
      bool sharedattrs=(exons.Count()>0 && exons[0]->attrs==attrs);
      delete attrs; attrs=NULL;
      if (sharedattrs) exons[0]->attrs=NULL;
      }
    }
  GffObj(char* anid=NULL):GSeg(0,0), exons(true,true,false), cdss(NULL), children(1,false), gscore() {
                                   //exons: sorted, free, non-unique
       gffID=NULL;
       uptr=NULL;
       ulink=NULL;
       flags=0;
       udata=0;
       parent=NULL;
       ftype_id=-1;
       subftype_id=-1;
       if (anid!=NULL) gffID=Gstrdup(anid);
       gffnames_ref(names);
       CDstart=0; // hasCDS <=> CDstart>0
       CDend=0;
       CDphase=0;
       gseq_id=-1;
       track_id=-1;
       strand='.';
       attrs=NULL;
       covlen=0;
       geneID=NULL;
       gene_name=NULL;
   }
   ~GffObj() {
       GFREE(gffID);
       GFREE(gene_name);
       GFREE(geneID);
       delete cdss;
       clearAttrs();
       gffnames_unref(names);
       }
   //--------------
   GffObj* finalize(GffReader* gfr);
               //complete parsing: must be called in order to merge adjacent/close proximity subfeatures
   void parseAttrs(GffAttrs*& atrlist, char* info, bool isExon=false, bool CDSsrc=false);
   const char* getSubfName() { //returns the generic feature type of the entries in exons array
     return names->feats.getName(subftype_id);
     }
   void setCDS(uint cd_start, uint cd_end, char phase=0);
   void setCDS(GffObj* t); //set CDS from another transcript

   bool monoFeature() {
     return (exons.Count()==0 ||
          (exons.Count()==1 &&  //exon_ftype_id==ftype_id &&
              exons[0]->end==this->end && exons[0]->start==this->start));
     }

   bool hasCDS() { return (CDstart>0); }

   const char* getFeatureName() {
     return names->feats.getName(ftype_id);
     }
   void setFeatureName(const char* feature);

   void addAttr(const char* attrname, const char* attrvalue);
   int removeAttr(const char* attrname, const char* attrval=NULL);
   int removeAttr(int aid, const char* attrval=NULL);
   int removeAttrs(GStrSet<>& attrSet); //remove attributes whose names are NOT in attrSet
   int removeExonAttr(GffExon& exon, const char* attrname, const char* attrval=NULL);
   int removeExonAttr(GffExon& exon, int aid, const char* attrval=NULL);

   const char* getAttrName(int i) {
     if (attrs==NULL) return NULL;
     return names->attrs.getName(attrs->Get(i)->attr_id);
   }

   char* getAttr(const char* attrname, bool checkFirstExon=false) {
     if (names==NULL || attrname==NULL) return NULL;
     char* r=NULL;
     if (attrs==NULL) {
         if (!checkFirstExon) return NULL;
     } else
         r=attrs->getAttr(names, attrname);
     if (r!=NULL) return r;
     if (checkFirstExon && exons.Count()>0) {
        r=exons.First()->getAttr(names, attrname);
     }
     return r;
   }

   char* getExonAttr(GffExon* exon, const char* attrname) {
      if (exon==NULL || attrname==NULL) return NULL;
      return exon->getAttr(names, attrname);
   }

   char* getExonAttr(int exonidx, const char* attrname) {
      if (exonidx<0 || exonidx>=exons.Count() || attrname==NULL) return NULL;
      return exons[exonidx]->getAttr(names, attrname);
      }

   char* getAttrValue(int i) {
     if (attrs==NULL) return NULL;
     return attrs->Get(i)->attr_val;
     }
   const char* getGSeqName() {
     return names->gseqs.getName(gseq_id);
     }

   const char* getRefName() {
     return names->gseqs.getName(gseq_id);
     }
   void setRefName(const char* newname);

   const char* getTrackName() {
     return names->tracks.getName(track_id);
   }
   bool exonOverlap(uint s, uint e) {//check if ANY exon overlaps given segment
      //ignores strand!
      if (s>e) Gswap(s,e);
      for (int i=0;i<exons.Count();i++) {
         if (exons[i]->overlap(s,e)) return true;
         }
      return false;
   }
   bool exonOverlap(GffObj& m) {//check if ANY exon overlaps given segment
     //if (gseq_id!=m.gseq_id) return false;
     // ignores strand and gseq_id, must check in advance
     for (int i=0;i<exons.Count();i++) {
         for (int j=0;j<m.exons.Count();j++) {
            if (exons[i]->start>m.exons[j]->end) continue;
            if (m.exons[j]->start>exons[i]->end) break;
            //-- overlap if we are here:
            return true;
         }
     }
     return false;
   }

   int exonOverlapIdx(GList<GffExon>& segs, uint s, uint e, int* ovlen=NULL, int start_idx=0);

   int exonOverlapLen(GffObj& m) {
      if (start>m.end || m.start>end) return 0;
      int i=0;
      int j=0;
      int ovlen=0;
      while (i<exons.Count() && j<m.exons.Count()) {
        uint istart=exons[i]->start;
        uint iend=exons[i]->end;
        uint jstart=m.exons[j]->start;
        uint jend=m.exons[j]->end;
        if (istart>jend) { j++; continue; }
        if (jstart>iend) { i++; continue; }
        //exon overlap
        uint ovstart=GMAX(istart,jstart);
        if (iend<jend) {
           ovlen+=iend-ovstart+1;
           i++;
           }
        else {
           ovlen+=jend-ovstart+1;
           j++;
           }
        }//while comparing exons
      return ovlen;
      }

    bool exonOverlap(GffObj* m) {
      return exonOverlap(*m);
      }

   //---------------------
   bool operator==(GffObj& d){
       return (gseq_id==d.gseq_id && start==d.start && end==d.end && strcmp(gffID, d.gffID)==0);
       }
   bool operator>(GffObj& d){
      if (gseq_id!=d.gseq_id) return (gseq_id>d.gseq_id);
      if (start==d.start) {
         if (getLevel()==d.getLevel()) {
             if (end==d.end) return (strcmp(gffID, d.gffID)>0);
                        else return (end>d.end);
             } else return (getLevel()>d.getLevel());
         } else return (start>d.start);
      }
   bool operator<(GffObj& d){
     if (gseq_id!=d.gseq_id) return (gseq_id<d.gseq_id);
     if (start==d.start) {
         if (getLevel()==d.getLevel()) {
            if (end==d.end) return strcmp(gffID, d.gffID)<0;
                     else return end<d.end;
            } else return (getLevel()<d.getLevel());
        } else return (start<d.start);
     }
   char* getID() { return gffID; }

   char* getGeneID() { return geneID; }
   char* getGeneName() { return gene_name; }
   void setGeneName(const char* gname) {
        GFREE(gene_name);
        if (gname) gene_name=Gstrdup(gname);
   }
   void setGeneID(const char* gene_id) {
        GFREE(geneID);
        if (gene_id) geneID=Gstrdup(gene_id);
   }
   int addSeg(GffLine* gfline);
   int addSeg(int fnid, GffLine* gfline);
   void getCDSegs(GVec<GffExon>& cds);

   void updateCDSPhase(GList<GffExon>& segs); //for CDS-only features, updates GffExon::phase
   void printGTab(FILE* fout, char** extraAttrs=NULL);
   void printGxfExon(FILE* fout, const char* tlabel, const char* gseqname,
          bool iscds, GffExon* exon, bool gff3, bool cvtChars);
   void printGxf(FILE* fout, GffPrintMode gffp=pgffExon,
             const char* tlabel=NULL, const char* gfparent=NULL, bool cvtChars=false);
   void printGtf(FILE* fout, const char* tlabel=NULL, bool cvtChars=false) {
      printGxf(fout, pgtfAny, tlabel, NULL, cvtChars);
   }
   void printGff(FILE* fout, const char* tlabel=NULL,
                                const char* gfparent=NULL, bool cvtChars=false) {
      printGxf(fout, pgffAny, tlabel, gfparent, cvtChars);
   }
   bool printAttrs(FILE* fout,  const char* sep=";", bool GTFstyle=false, bool cvtChars=false, bool sepFirst=true);
   void printTranscriptGff(FILE* fout, char* tlabel=NULL,
                            bool showCDS=false, const char* gfparent=NULL, bool cvtChars=false) {
      if (isValidTranscript())
         printGxf(fout, showCDS ? pgffBoth : pgffExon, tlabel, gfparent, cvtChars);
      }
   void printExonList(FILE* fout); //print comma delimited list of exon intervals
   void printCDSList(FILE* fout); //print comma delimited list of CDS intervals

   void printBED(FILE* fout, bool cvtChars);
       //print a BED-12 line + GFF3 attributes in 13th field
   void printSummary(FILE* fout=NULL);

   char* getSpliced(GFaSeqGet* faseq, bool CDSonly=false, int* rlen=NULL,
           uint* cds_start=NULL, uint* cds_end=NULL, GMapSegments* seglst=NULL,
		   bool cds_open=false);
    char* getUnspliced(GFaSeqGet* faseq, int* rlen, GMapSegments* seglst=NULL);

    void addPadding(int padLeft, int padRight); //change exons to include this padding on the sides
    void removePadding(int padLeft, int padRight);

   //bool validCDS(GFaSeqGet* faseq); //has In-Frame Stop Codon ?
   bool empty() { return (start==0); }
};

typedef bool GffRecFunc(GffObj* gobj, void* usrptr1, void* usrptr2);
//user callback after parsing a mapping object:
// Returns: "done with it" status:
//   TRUE if gobj is no longer needed so it's FREEd upon return
//   FALSE if the user needs the gobj pointer and is responsible for
//             collecting and freeing all GffObj objects


//GSeqStat: collect basic stats about a common underlying genomic sequence
//          for multiple GffObj
class GSeqStat {
 public:
   int gseqid; //gseq id in the global static pool of gseqs
   char* gseqname; //just a pointer to the name of gseq
   int fcount;//number of features on this gseq
   uint mincoord;
   uint maxcoord;
   uint maxfeat_len; //maximum feature length on this genomic sequence
   GffObj* maxfeat;
   GSeqStat(int id=-1, char* name=NULL) {
     gseqid=id;
     gseqname=name;
     fcount=0;
     mincoord=MAXUINT;
     maxcoord=0;
     maxfeat_len=0;
     maxfeat=NULL;
     }
   bool operator>(GSeqStat& g) {
    return (gseqid>g.gseqid);
    }
   bool operator<(GSeqStat& g) {
    return (gseqid<g.gseqid);
    }
   bool operator==(GSeqStat& g) {
    return (gseqid==g.gseqid);
    }
};


int gfo_cmpByLoc(const pointer p1, const pointer p2);
int gfo_cmpRefByID(const pointer p1, const pointer p2);

class GfList: public GList<GffObj> {
 public:

   GfList(bool sorted):GList<GffObj>(sorted,false,false) { }
   GfList():GList<GffObj>(false,false,false) {
     //GffObjs in this list are NOT deleted when the list is cleared
     //-- for deallocation of these objects, call freeAll() or freeUnused() as needed
   }
   void finalize(GffReader* gfr);

   void freeAll() {
     for (int i=0;i<fCount;i++) {
       delete fList[i];
       fList[i]=NULL;
       }
     Clear();
   }
   void freeUnused() {
     for (int i=0;i<fCount;i++) {
       if (fList[i]->isUsed()) continue;
       /*//inform the children?
       for (int c=0;c<fList[i]->children.Count();c++) {
          fList[i]->children[c]->parent=NULL;
       }
       */
       delete fList[i];
       fList[i]=NULL;
       }
     Clear();
     }
};

class CNonExon { //utility class used in subfeature promotion
 public:
   //int idx;
   GffObj* parent;
   GffExon* exon;
   GffLine* gffline;
   //CNonExon(int i, GffObj* p, GffExon* e, GffLine* gl) {
   CNonExon(GffObj* p, GffExon* e, GffLine& gl) {
     parent=p;
     exon=e;
     //idx=i;
     gffline=new GffLine(gl);
     }
  ~CNonExon() {
     delete gffline;
     }
 };


class GffReader {
  friend class GffObj;
  friend class GffLine;
  friend class GfList;
  char* linebuf;
  off_t fpos;
  int buflen;
 protected:
  union {
	unsigned int flags;
    unsigned int gff_type: 6;
    struct {
       bool is_gff3: 1;  //GFF3 syntax was detected
       bool is_gtf:1; //GTF syntax was detected
       bool gtf_transcript:1; //has "transcript" features (2-level GTF)
       bool gtf_gene:1; //has "gene" features (3-level GTF ..Ensembl?)
       bool is_BED:1; //input is BED-12 format, possibly with attributes in 13th field
       bool is_TLF:1; //input is GFF3-like Transcript Line Format with exons= attribute
       //--other flags
       bool transcripts_Only:1; //default ; only keep recognized transcript features
       bool keep_Genes:1; //for transcriptsOnly, do not discard genes from gflst
       bool keep_Attrs:1;
       bool keep_AllExonAttrs:1; //when keep_Attrs, do not attempt to reduce exon attributes
       bool noExonAttrs:1;
       bool ignoreLocus:1; //discard locus features and attributes from input
       bool merge_CloseExons:1;
       bool gene2exon:1;
       bool sortByLoc:1; //if records should be sorted by location
       bool refAlphaSort:1; //if sortByLoc, reference sequences are
                       // sorted lexically instead of their id#
       //Ensembl ID processing:
       bool xEnsemblID:1; //for ensemble GTF merge gene_version and transcript_version into the ID
                //for ensemble GFF3, cannot merge version (!), just remove "transcript:" and "gene:" prefixes
       bool gff_warns:1;
    };
  };
  //char* lastReadNext;
  FILE* fh;
  char* fname;  //optional fasta file with the underlying genomic sequence to be attached to this reader
  GFFCommentParser* commentParser;
  GffLine* gffline;
  BEDLine* bedline;
  //bool transcriptsOnly; //keep only transcripts w/ their exon/CDS features
  //bool gene2exon;  // for childless genes: add an exon as the entire gene span
  GHash<int> discarded_ids; //for transcriptsOnly mode, keep track
                            // of discarded parent IDs
  GHash< GPVec<GffObj>* > phash; //transcript_id => GPVec<GffObj>(false)
  char* gfoBuildId(const char* id, const char* ctg);
  //void gfoRemove(const char* id, const char* ctg);
  GffObj* gfoAdd(GffObj* gfo);
  GffObj* gfoAdd(GPVec<GffObj>& glst, GffObj* gfo);
  GffObj* gfoReplace(GPVec<GffObj>& glst, GffObj* gfo, GffObj* toreplace);
  // const char* id, const char* ctg, char strand, GVec<GfoHolder>** glst, uint start, uint end
  bool pFind(const char* id, GPVec<GffObj>*& glst);
  GffObj* gfoFind(const char* id, GPVec<GffObj>* & glst, const char* ctg=NULL,
	                                         char strand=0, uint start=0, uint end=0);
  CNonExon* subfPoolCheck(GffLine* gffline, GHash<CNonExon*>& pex, char*& subp_name);
  void subfPoolAdd(GHash<CNonExon*>& pex, GffObj* newgfo);
  GffObj* promoteFeature(CNonExon* subp, char*& subp_name, GHash<CNonExon*>& pex);

#ifdef CUFFLINKS
     boost::crc_32_type  _crc_result;
#endif
 public:
  GPVec<GSeqStat> gseqtable; //table with all genomic sequences, but only current GXF gseq ID indices will have non-NULL
  //GffNames* names; //just a pointer to the global static Gff names repository
  GfList gflst; //keeps track of all GffObj records being read (when readAll() is used)
  GffObj* newGffRec(GffLine* gffline, GffObj* parent=NULL, GffExon* pexon=NULL,
		       GPVec<GffObj>* glst=NULL, bool replace_parent=false);
  GffObj* newGffRec(BEDLine* bedline, GPVec<GffObj>* glst=NULL);
  //GffObj* replaceGffRec(GffLine* gffline, bool keepAttr, bool noExonAttr, int replaceidx);
  GffObj* updateGffRec(GffObj* prevgfo, GffLine* gffline);
  GffObj* updateParent(GffObj* newgfh, GffObj* parent);
  bool readExonFeature(GffObj* prevgfo, GffLine* gffline, GHash<CNonExon*>* pex = NULL);
  GPVec<GSeqStat> gseqStats; //populated after finalize() with only the ref seqs in this file
  GffReader(FILE* f=NULL, bool t_only=false, bool sort=false):linebuf(NULL), fpos(0),
		  buflen(0), flags(0), fh(f), fname(NULL), commentParser(NULL), gffline(NULL),
		  bedline(NULL), discarded_ids(true), phash(true), gseqtable(1,true),
		  gflst(), gseqStats(1, false) {
      GMALLOC(linebuf, GFF_LINELEN);
      buflen=GFF_LINELEN-1;
      gffnames_ref(GffObj::names);
      //gff_warns=gff_show_warnings;
      transcripts_Only=t_only;
      sortByLoc=sort;
      noExonAttrs=true;
      //lastReadNext=NULL;
  }
  /*
  void init(FILE *f, bool t_only=false, bool sortbyloc=false, bool g2exon=false) {
      fname=NULL;
      fh=f;
      if (fh!=NULL) rewind(fh);
      fpos=0;
      flags=0;
      transcriptsOnly=t_only;
      gflst.sortedByLoc(sortbyloc);
      gene2exon=g2exon;
  }
  */
  void gene2Exon(bool v) { gene2exon=v;}
  void procEnsemblID(bool v) { xEnsemblID=v;}
  bool procEnsemblID() { return xEnsemblID; }
  void enableSorting(bool sorting=true) { sortByLoc=sorting; }
  bool getSorting() { return sortByLoc; }
  void isBED(bool v=true) { is_BED=v; } //should be set before any parsing!
  void isTLF(bool v=true) { is_TLF=v; } //should be set before any parsing!
  void keepAttrs(bool keep_attrs=true, bool discardExonAttrs=true, bool preserve_exon_attrs=false) {
	  keep_Attrs=keep_attrs;
	  noExonAttrs=discardExonAttrs;
	  keep_AllExonAttrs=preserve_exon_attrs;
  }
  void transcriptsOnly(bool t_only) { transcripts_Only=t_only; }
  bool transcriptsOnly() { return transcripts_Only; }
  void setIgnoreLocus(bool nolocus) { ignoreLocus=nolocus; }
  void keepGenes(bool keep_genes) {
	  keep_Genes=keep_genes;
  }
  bool keepGenes() { return keep_Genes; }
  void mergeCloseExons(bool merge_close_exons=true) {
	  merge_CloseExons=merge_close_exons;
  }
  void showWarnings(bool v) {
     gff_warns=v;
     //gff_show_warnings=v;
  }
  bool showWarnings() {
     return gff_warns;
  }
  void setRefAlphaSorted(bool v=true) {
	refAlphaSort=v;
	if (v) sortByLoc=true;
  }
  void setCommentParser(GFFCommentParser* cmParser=NULL) {
	  commentParser=cmParser;
  }

  GffReader(const char* fn, bool t_only=false, bool sort=false):linebuf(NULL), fpos(0),
	  		  buflen(0), flags(0), fh(NULL), fname(NULL), commentParser(NULL),
			  gffline(NULL), bedline(NULL), discarded_ids(true),
			  phash(true), gseqtable(1,true), gflst(), gseqStats(1,false) {
      //gff_warns=gff_show_warnings;
      gffnames_ref(GffObj::names);
      noExonAttrs=true;
      transcripts_Only=t_only;
      sortByLoc=sort;
      fname=Gstrdup(fn);
      fh=fopen(fname, "rb");
      GMALLOC(linebuf, GFF_LINELEN);
      buflen=GFF_LINELEN-1;
      //lastReadNext=NULL;
      }

 ~GffReader() {
      delete gffline;
      gffline=NULL;
      fpos=0;
      if (fh && fh!=stdin) fclose(fh);
      gflst.freeUnused();
      gflst.Clear();
      discarded_ids.Clear();
      phash.Clear();
      GFREE(fname);
      GFREE(linebuf);
      //GFREE(lastReadNext);
      gffnames_unref(GffObj::names);
  }


  GffLine* nextGffLine();
  BEDLine* nextBEDLine();

  // load all subfeatures, re-group them:
  void readAll();
  void readAll(bool keepAttr, bool mergeCloseExons=false, bool noExonAttr=true) {
	  this->keep_Attrs=keepAttr;
	  this->merge_CloseExons=mergeCloseExons;
	  this->noExonAttrs=noExonAttr;
	  readAll();
  }


  //only for well-formed files: BED or GxF where exons are strictly grouped by their transcript_id/Parent
  GffObj* readNext(); //user must free the returned GffObj* !

#ifdef CUFFLINKS
    boost::crc_32_type current_crc_result() const { return _crc_result; }
#endif

}; // end of GffReader

// ----------------------------------------------------------
// -- auxiliary classes for GffObj::processGeneSegments() --
class GSegMatch { //keep track of "matching" overlaps of a GeneCDSChain with multiple GeneSegment containers
  public:
   int child_idx; //index of matching _gene_segment GffObj in gene->children[] list
   int noncov; //number of "non-covered" bases in the GeneSegment
   int gsegidx; //index of _gene_segment in GVec<int> geneSegs
     // (i.e. UTRs + implied introns if exons are missing)
   bool operator<(GSegMatch& o) { return (noncov<o.noncov); }
   bool operator==(GSegMatch& o) { return (noncov==o.noncov); }
   GSegMatch(int cidx=-1, int ncov=-1, int gsidx=-1):child_idx(cidx),
    	   noncov(ncov), gsegidx(gsidx) { }
};

class GeneCDS: public GSeg {
  public:
	int idx; //index of this CDS entry in this gene->cdss[] list
	GeneCDS(int i=-1, uint cstart=0, uint cend=0):GSeg(cstart, cend), idx(i) {
	}
};

class GeneCDSChain: public GSeg { //keep track of CDS chains of the gene and their boundaries
  public:
	GVec<GeneCDS> cdsList; //all CDSs in this chain
	GArray<GSegMatch> mxs; //list of "matching" container X_gene_segment transcripts;
	GeneCDSChain():cdsList(),mxs() { }
	GeneCDSChain(int idx, uint cstart, uint cend):GSeg(cstart, cend),
	    	cdsList(),mxs(true) {
	    addCDS(idx, cstart, cend);

	}
	void addCDS(int idx, uint cstart, uint cend) {
	    GeneCDS cds(idx, cstart, cend);
	    cdsList.Add(cds);
	    expandInclude(cstart, cend);
	}
	void addMatch(int childidx, int ncov, int gsegidx) {
	    GSegMatch segmatch(childidx, ncov, gsegidx);
	    mxs.Add(segmatch);
	}
	bool singleExonCDSMatch(uint tstart, uint tend, int& ncov) {
	    if (start>=tstart && end<=tend) {
	    	ncov=start-tstart + tend-end;
	    	//add all CDS-"introns"
	    	if (cdsList.Count()>1)
	    		//shouldn't really consider this a valid "match"
	    		for (int i=1;i<cdsList.Count();i++)
	    			ncov+=cdsList[i].start-cdsList[i-1].end-1;
	    	return true;
	    }
	    return false;
	}
	bool singleCDStoExon(GffObj&t, int& ncov) {
	    //cdsList[0] must be contained in a single exon of t
	    int nc=0;
	    bool match=false;
	    for (int i=0;i<t.exons.Count();i++) {
	    	if (t.exons[i]->overlap(cdsList[0])) {
	    	   if (cdsList[0].start>=t.exons[i]->start &&
	    			cdsList[0].end<=t.exons[i]->end) {
	    		  match=true;
	    		  nc+=cdsList[0].start-t.exons[i]->start+t.exons[i]->end+cdsList[0].end;
	    	   } //contained in this exon
	    	   else return false; //overlap, but not contained
	    	   continue;
	    	}
	    	nc+=t.exons[i]->len();
	    }
	    if (!match) return false;
	    ncov=nc;
	    return true;
	}

	bool multiCDStoExon(GffObj &t, int& ncov) {
	    //multi-CDS vs multi-exon t
	    int nc=0;
	    int e=0, c=0;
	    int emax=t.exons.Count()-1;
	    int cmax=cdsList.Count()-1;
	    int mintrons=0; //matched introns
	    while (e<emax && c<cmax) {
	    	if (mintrons>0 &&
	    			(cdsList[c].end!=t.exons[e]->end ||
	    					cdsList[c+1].start!=t.exons[e+1]->start))
	    		return false;
	    	GSeg cintron(cdsList[c].end+1, cdsList[c+1].start-1);
	    	GSeg eintron(t.exons[e]->end+1, t.exons[e+1]->start-1);
	    	if (cintron.start>eintron.end) {
	    		nc+=t.exons[e]->len();
	    		e++;
	    		continue;
	    	}
	    	if (eintron.start<=cintron.end) {
	    		//intron overlap
	    		if (cintron.start==eintron.start &&
	    				cintron.end==eintron.end) {
	    			//intron match
	    			if (mintrons==0) {
	    				if (cdsList[c].start<t.exons[e]->start) return false;
	    				nc+=cdsList[c].start-t.exons[e]->start;
	    			}
	    			mintrons++;
	    			c++;e++;
	    			continue;
	    		}
	    		else return false;
	    	}
	    	c++; //should never get here, CDS shouldn't be have to catch up with e
	    }
	    if (mintrons<cdsList.Count()-1) return false;
        //c should be cmax, e should be the last exon with CDS
	    nc+=t.exons[e]->end-cdsList[c].end;
	    for(int i=e+1;i<t.exons.Count();i++)
	    	nc+=t.exons[i]->len();
	    ncov=nc;
	    return true;
	}

	bool containedBy(GffObj& t, int& ncov) {

	    // (Warning: t may have no defined exons!)
	    //if yes: ncov will be set to the number of non-CDS-covered bases in t
	    if (t.exons.Count()<2) {
           if (t.exons.Count()==0)
               //no exons defined, just check boundaries
               return singleExonCDSMatch(t.start, t.end, ncov);
           else //single-exon
               return singleExonCDSMatch(t.exons[0]->start, t.exons[0]->end, ncov);
	    } //single or no exon
	    else { //multi-exon transcript
	    	if (start<t.exons.First()->start || end>t.exons.Last()->end)
	    		return false; //no containment possible;
	    	if (cdsList.Count()==1)
	    		return singleCDStoExon(t, ncov);
            //check intron compatibility!
	    }
	    return true;
	}
};


#endif