1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/* cipher-gcm-aarch64-simd.c - ARM/NEON accelerated GHASH
* Copyright (C) 2019-2024 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "types.h"
#include "g10lib.h"
#include "cipher.h"
#include "bufhelp.h"
#include "./cipher-internal.h"
#ifdef GCM_USE_AARCH64
#include "simd-common-aarch64.h"
#include <arm_neon.h>
#define ALWAYS_INLINE inline __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#define NO_INSTRUMENT_FUNCTION __attribute__((no_instrument_function))
#define ASM_FUNC_ATTR NO_INSTRUMENT_FUNCTION
#define ASM_FUNC_ATTR_INLINE ASM_FUNC_ATTR ALWAYS_INLINE
#define ASM_FUNC_ATTR_NOINLINE ASM_FUNC_ATTR NO_INLINE
static ASM_FUNC_ATTR_INLINE uint64x2_t
byteswap_u64x2(uint64x2_t vec)
{
vec = (uint64x2_t)vrev64q_u8((uint8x16_t)vec);
vec = (uint64x2_t)vextq_u8((uint8x16_t)vec, (uint8x16_t)vec, 8);
return vec;
}
static ASM_FUNC_ATTR_INLINE uint64x2_t
veor_u64x2(uint64x2_t va, uint64x2_t vb)
{
return (uint64x2_t)veorq_u8((uint8x16_t)va, (uint8x16_t)vb);
}
static ASM_FUNC_ATTR_INLINE uint64x1_t
veor_u64x1(uint64x1_t va, uint64x1_t vb)
{
return (uint64x1_t)veor_u8((uint8x8_t)va, (uint8x8_t)vb);
}
static ASM_FUNC_ATTR_INLINE uint64x1_t
vand_u64x1(uint64x1_t va, uint64x1_t vb)
{
return (uint64x1_t)vand_u8((uint8x8_t)va, (uint8x8_t)vb);
}
static ASM_FUNC_ATTR_INLINE uint64x1_t
vorr_u64x1(uint64x1_t va, uint64x1_t vb)
{
return (uint64x1_t)vorr_u8((uint8x8_t)va, (uint8x8_t)vb);
}
/* 64x64=>128 carry-less multiplication using vmull.p8 instruction.
*
* From "Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R. Fast Software
* Polynomial Multiplication on ARM Processors using the NEON Engine. The
* Second International Workshop on Modern Cryptography and Security
* Engineering — MoCrySEn, 2013". */
static ASM_FUNC_ATTR_INLINE uint64x2_t
emulate_vmull_p64(uint64x1_t ad, uint64x1_t bd)
{
static const uint64x1_t k0 = { 0 };
static const uint64x1_t k16 = { U64_C(0xffff) };
static const uint64x1_t k32 = { U64_C(0xffffffff) };
static const uint64x1_t k48 = { U64_C(0xffffffffffff) };
uint64x1_t rl;
uint64x2_t rq;
uint64x1_t t0l;
uint64x1_t t0h;
uint64x2_t t0q;
uint64x1_t t1l;
uint64x1_t t1h;
uint64x2_t t1q;
uint64x1_t t2l;
uint64x1_t t2h;
uint64x2_t t2q;
uint64x1_t t3l;
uint64x1_t t3h;
uint64x2_t t3q;
t0l = (uint64x1_t)vext_u8((uint8x8_t)ad, (uint8x8_t)ad, 1);
t0q = (uint64x2_t)vmull_p8((poly8x8_t)t0l, (poly8x8_t)bd);
rl = (uint64x1_t)vext_u8((uint8x8_t)bd, (uint8x8_t)bd, 1);
rq = (uint64x2_t)vmull_p8((poly8x8_t)ad, (poly8x8_t)rl);
t1l = (uint64x1_t)vext_u8((uint8x8_t)ad, (uint8x8_t)ad, 2);
t1q = (uint64x2_t)vmull_p8((poly8x8_t)t1l, (poly8x8_t)bd);
t3l = (uint64x1_t)vext_u8((uint8x8_t)bd, (uint8x8_t)bd, 2);
t3q = (uint64x2_t)vmull_p8((poly8x8_t)ad, (poly8x8_t)t3l);
t2l = (uint64x1_t)vext_u8((uint8x8_t)ad, (uint8x8_t)ad, 3);
t2q = (uint64x2_t)vmull_p8((poly8x8_t)t2l, (poly8x8_t)bd);
t0q = veor_u64x2(t0q, rq);
t0l = vget_low_u64(t0q);
t0h = vget_high_u64(t0q);
rl = (uint64x1_t)vext_u8((uint8x8_t)bd, (uint8x8_t)bd, 3);
rq = (uint64x2_t)vmull_p8((poly8x8_t)ad, (poly8x8_t)rl);
t1q = veor_u64x2(t1q, t3q);
t1l = vget_low_u64(t1q);
t1h = vget_high_u64(t1q);
t3l = (uint64x1_t)vext_u8((uint8x8_t)bd, (uint8x8_t)bd, 4);
t3q = (uint64x2_t)vmull_p8((poly8x8_t)ad, (poly8x8_t)t3l);
t3l = vget_low_u64(t3q);
t3h = vget_high_u64(t3q);
t0l = veor_u64x1(t0l, t0h);
t0h = vand_u64x1(t0h, k48);
t1l = veor_u64x1(t1l, t1h);
t1h = vand_u64x1(t1h, k32);
t2q = veor_u64x2(t2q, rq);
t2l = vget_low_u64(t2q);
t2h = vget_high_u64(t2q);
t0l = veor_u64x1(t0l, t0h);
t1l = veor_u64x1(t1l, t1h);
t2l = veor_u64x1(t2l, t2h);
t2h = vand_u64x1(t2h, k16);
t3l = veor_u64x1(t3l, t3h);
t3h = k0;
t0q = vcombine_u64(t0l, t0h);
t0q = (uint64x2_t)vextq_u8((uint8x16_t)t0q, (uint8x16_t)t0q, 15);
t2l = veor_u64x1(t2l, t2h);
t1q = vcombine_u64(t1l, t1h);
t1q = (uint64x2_t)vextq_u8((uint8x16_t)t1q, (uint8x16_t)t1q, 14);
rq = (uint64x2_t)vmull_p8((poly8x8_t)ad, (poly8x8_t)bd);
t2q = vcombine_u64(t2l, t2h);
t2q = (uint64x2_t)vextq_u8((uint8x16_t)t2q, (uint8x16_t)t2q, 13);
t3q = vcombine_u64(t3l, t3h);
t3q = (uint64x2_t)vextq_u8((uint8x16_t)t3q, (uint8x16_t)t3q, 12);
t0q = veor_u64x2(t0q, t1q);
t2q = veor_u64x2(t2q, t3q);
rq = veor_u64x2(rq, t0q);
rq = veor_u64x2(rq, t2q);
return rq;
}
/* GHASH functions.
*
* See "Gouvêa, C. P. L. & López, J. Implementing GCM on ARMv8. Topics in
* Cryptology — CT-RSA 2015" for details.
*/
static ASM_FUNC_ATTR_INLINE uint64x2x2_t
pmul_128x128(uint64x2_t a, uint64x2_t b)
{
uint64x1_t a_l = vget_low_u64(a);
uint64x1_t a_h = vget_high_u64(a);
uint64x1_t b_l = vget_low_u64(b);
uint64x1_t b_h = vget_high_u64(b);
uint64x1_t t1_h = veor_u64x1(b_l, b_h);
uint64x1_t t1_l = veor_u64x1(a_l, a_h);
uint64x2_t r0 = emulate_vmull_p64(a_l, b_l);
uint64x2_t r1 = emulate_vmull_p64(a_h, b_h);
uint64x2_t t2 = emulate_vmull_p64(t1_h, t1_l);
uint64x1_t t2_l, t2_h;
uint64x1_t r0_l, r0_h;
uint64x1_t r1_l, r1_h;
t2 = veor_u64x2(t2, r0);
t2 = veor_u64x2(t2, r1);
r0_l = vget_low_u64(r0);
r0_h = vget_high_u64(r0);
r1_l = vget_low_u64(r1);
r1_h = vget_high_u64(r1);
t2_l = vget_low_u64(t2);
t2_h = vget_high_u64(t2);
r0_h = veor_u64x1(r0_h, t2_l);
r1_l = veor_u64x1(r1_l, t2_h);
r0 = vcombine_u64(r0_l, r0_h);
r1 = vcombine_u64(r1_l, r1_h);
return (const uint64x2x2_t){ .val = { r0, r1 } };
}
/* Reduction using Xor and Shift.
*
* See "Shay Gueron, Michael E. Kounavis. Intel Carry-Less Multiplication
* Instruction and its Usage for Computing the GCM Mode" for details.
*/
static ASM_FUNC_ATTR_INLINE uint64x2_t
reduction(uint64x2x2_t r0r1)
{
static const uint64x2_t k0 = { U64_C(0), U64_C(0) };
uint64x2_t r0 = r0r1.val[0];
uint64x2_t r1 = r0r1.val[1];
uint64x2_t t0q;
uint64x2_t t1q;
uint64x2_t t2q;
uint64x2_t t;
t0q = (uint64x2_t)vshlq_n_u32((uint32x4_t)r0, 31);
t1q = (uint64x2_t)vshlq_n_u32((uint32x4_t)r0, 30);
t2q = (uint64x2_t)vshlq_n_u32((uint32x4_t)r0, 25);
t0q = veor_u64x2(t0q, t1q);
t0q = veor_u64x2(t0q, t2q);
t = (uint64x2_t)vextq_u8((uint8x16_t)t0q, (uint8x16_t)k0, 4);
t0q = (uint64x2_t)vextq_u8((uint8x16_t)k0, (uint8x16_t)t0q, 16 - 12);
r0 = veor_u64x2(r0, t0q);
t0q = (uint64x2_t)vshrq_n_u32((uint32x4_t)r0, 1);
t1q = (uint64x2_t)vshrq_n_u32((uint32x4_t)r0, 2);
t2q = (uint64x2_t)vshrq_n_u32((uint32x4_t)r0, 7);
t0q = veor_u64x2(t0q, t1q);
t0q = veor_u64x2(t0q, t2q);
t0q = veor_u64x2(t0q, t);
r0 = veor_u64x2(r0, t0q);
return veor_u64x2(r0, r1);
}
ASM_FUNC_ATTR_NOINLINE unsigned int
_gcry_ghash_aarch64_simd(gcry_cipher_hd_t c, byte *result, const byte *buf,
size_t nblocks)
{
uint64x2_t rhash;
uint64x2_t rh1;
uint64x2_t rbuf;
uint64x2x2_t rr0rr1;
if (nblocks == 0)
return 0;
rhash = vld1q_u64((const void *)result);
rh1 = vld1q_u64((const void *)c->u_mode.gcm.u_ghash_key.key);
rhash = byteswap_u64x2(rhash);
rbuf = vld1q_u64((const void *)buf);
buf += 16;
nblocks--;
rbuf = byteswap_u64x2(rbuf);
rhash = veor_u64x2(rhash, rbuf);
while (nblocks)
{
rbuf = vld1q_u64((const void *)buf);
buf += 16;
nblocks--;
rr0rr1 = pmul_128x128(rhash, rh1);
rbuf = byteswap_u64x2(rbuf);
rhash = reduction(rr0rr1);
rhash = veor_u64x2(rhash, rbuf);
}
rr0rr1 = pmul_128x128(rhash, rh1);
rhash = reduction(rr0rr1);
rhash = byteswap_u64x2(rhash);
vst1q_u64((void *)result, rhash);
clear_vec_regs();
return 0;
}
static ASM_FUNC_ATTR_INLINE void
gcm_lsh_1(void *r_out, uint64x2_t i)
{
static const uint64x1_t const_d = { U64_C(0xc200000000000000) };
uint64x1_t ia = vget_low_u64(i);
uint64x1_t ib = vget_high_u64(i);
uint64x1_t oa, ob, ma;
uint64x1x2_t oa_ob;
ma = (uint64x1_t)vshr_n_s64((int64x1_t)ib, 63);
oa = vshr_n_u64(ib, 63);
ob = vshr_n_u64(ia, 63);
ma = vand_u64x1(ma, const_d);
ib = vshl_n_u64(ib, 1);
ia = vshl_n_u64(ia, 1);
ob = vorr_u64x1(ob, ib);
oa = vorr_u64x1(oa, ia);
ob = veor_u64x1(ob, ma);
oa_ob = (const uint64x1x2_t){ .val = { oa, ob } };
vst2_u64(r_out, oa_ob);
}
ASM_FUNC_ATTR_NOINLINE void
_gcry_ghash_setup_aarch64_simd(gcry_cipher_hd_t c)
{
uint64x2_t rhash = vld1q_u64((const void *)c->u_mode.gcm.u_ghash_key.key);
rhash = byteswap_u64x2(rhash);
gcm_lsh_1(c->u_mode.gcm.u_ghash_key.key, rhash);
clear_vec_regs();
}
#endif /* GCM_USE_AARCH64 */
|