1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/* mpi-mod.c - Modular reduction
Copyright (C) 1998, 1999, 2001, 2002, 2003,
2007 Free Software Foundation, Inc.
This file is part of Libgcrypt.
Libgcrypt is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.
Libgcrypt is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA. */
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include "mpi-internal.h"
#include "longlong.h"
#include "g10lib.h"
/* Context used with Barrett reduction. */
struct barrett_ctx_s
{
gcry_mpi_t m; /* The modulus - may not be modified. */
int m_copied; /* If true, M needs to be released. */
int k;
gcry_mpi_t y;
gcry_mpi_t r1; /* Helper MPI. */
gcry_mpi_t r2; /* Helper MPI. */
gcry_mpi_t r3; /* Helper MPI allocated on demand. */
};
void
_gcry_mpi_mod (gcry_mpi_t rem, gcry_mpi_t dividend, gcry_mpi_t divisor)
{
_gcry_mpi_fdiv_r (rem, dividend, divisor);
}
/* This function returns a new context for Barrett based operations on
the modulus M. This context needs to be released using
_gcry_mpi_barrett_free. If COPY is true M will be transferred to
the context and the user may change M. If COPY is false, M may not
be changed until gcry_mpi_barrett_free has been called. */
mpi_barrett_t
_gcry_mpi_barrett_init (gcry_mpi_t m, int copy)
{
mpi_barrett_t ctx;
gcry_mpi_t tmp;
mpi_normalize (m);
ctx = xcalloc (1, sizeof *ctx);
if (copy)
{
ctx->m = mpi_copy (m);
ctx->m_copied = 1;
}
else
ctx->m = m;
ctx->k = mpi_get_nlimbs (m);
tmp = mpi_alloc (ctx->k + 1);
/* Barrett precalculation: y = floor(b^(2k) / m). */
mpi_set_ui (tmp, 1);
mpi_lshift_limbs (tmp, 2 * ctx->k);
mpi_fdiv_q (tmp, tmp, m);
ctx->y = tmp;
ctx->r1 = mpi_alloc ( 2 * ctx->k + 1 );
ctx->r2 = mpi_alloc ( 2 * ctx->k + 1 );
return ctx;
}
void
_gcry_mpi_barrett_free (mpi_barrett_t ctx)
{
if (ctx)
{
mpi_free (ctx->y);
mpi_free (ctx->r1);
mpi_free (ctx->r2);
if (ctx->r3)
mpi_free (ctx->r3);
if (ctx->m_copied)
mpi_free (ctx->m);
xfree (ctx);
}
}
/* R = X mod M
Using Barrett reduction. Before using this function
_gcry_mpi_barrett_init must have been called to do the
precalculations. CTX is the context created by this precalculation
and also conveys M. If the Barret reduction could no be done a
straightforward reduction method is used.
We assume that these conditions are met:
Input: x =(x_2k-1 ...x_0)_b
m =(m_k-1 ....m_0)_b with m_k-1 != 0
Output: r = x mod m
*/
void
_gcry_mpi_mod_barrett (gcry_mpi_t r, gcry_mpi_t x, mpi_barrett_t ctx)
{
gcry_mpi_t m = ctx->m;
int k = ctx->k;
gcry_mpi_t y = ctx->y;
gcry_mpi_t r1 = ctx->r1;
gcry_mpi_t r2 = ctx->r2;
int sign;
mpi_normalize (x);
if (mpi_get_nlimbs (x) > 2*k )
{
mpi_mod (r, x, m);
return;
}
sign = x->sign;
x->sign = 0;
/* 1. q1 = floor( x / b^k-1)
* q2 = q1 * y
* q3 = floor( q2 / b^k+1 )
* Actually, we don't need qx, we can work direct on r2
*/
mpi_set ( r2, x );
mpi_rshift_limbs ( r2, k-1 );
mpi_mul ( r2, r2, y );
mpi_rshift_limbs ( r2, k+1 );
/* 2. r1 = x mod b^k+1
* r2 = q3 * m mod b^k+1
* r = r1 - r2
* 3. if r < 0 then r = r + b^k+1
*/
mpi_set ( r1, x );
if ( r1->nlimbs > k+1 ) /* Quick modulo operation. */
r1->nlimbs = k+1;
mpi_mul ( r2, r2, m );
if ( r2->nlimbs > k+1 ) /* Quick modulo operation. */
r2->nlimbs = k+1;
mpi_sub ( r, r1, r2 );
if ( mpi_has_sign ( r ) )
{
if (!ctx->r3)
{
ctx->r3 = mpi_alloc ( k + 2 );
mpi_set_ui (ctx->r3, 1);
mpi_lshift_limbs (ctx->r3, k + 1 );
}
mpi_add ( r, r, ctx->r3 );
}
/* 4. while r >= m do r = r - m */
while ( mpi_cmp( r, m ) >= 0 )
mpi_sub ( r, r, m );
x->sign = sign;
}
void
_gcry_mpi_mul_barrett (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v,
mpi_barrett_t ctx)
{
mpi_mul (w, u, v);
mpi_mod_barrett (w, w, ctx);
}
|