1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/*******************************************************************************
NAME ALASKA CONFORMAL
PURPOSE: Transforms input Easting and Northing to longitude and
latitude for the Alaska Conformal projection. The
Easting and Northing must be in meters. The longitude
and latitude values will be returned in radians.
PROGRAMMER DATE
---------- ----
T. Mittan March, 1993
This function was adapted from the Alaska Conformal projection code
(FORTRAN) in the General Cartographic Transformation Package software
which is available from the U.S. Geological Survey National Mapping Division.
ALGORITHM REFERENCES
1. "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
2. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
State Government Printing Office, Washington D.C., 1987.
3. "Software Documentation for GCTP General Cartographic Transformation
Package", U.S. Geological Survey National Mapping Division, May 1982.
*******************************************************************************/
#include "cproj.h"
/* Variables common to all subroutines in this code file
-----------------------------------------------------*/
static double r_major; /* major axis */
static double r_minor; /* minor axis */
static double lon_center; /* Center longitude (projection center) */
static double lat_center; /* center latitude */
static double false_easting; /* x offset in meters */
static double false_northing; /* y offset in meters */
static double acoef[7];
static double bcoef[7];
static double sin_p26;
static double cos_p26;
static double e;
static long n;
/* Initialize the ALASKA CONFORMAL projection
-----------------------------------------*/
long alconinvint(r_maj,r_min,false_east,false_north)
double r_maj; /* Major axis */
double r_min; /* Minor axis */
double false_east; /* x offset in meters */
double false_north; /* y offset in meters */
{
long i;
double temp;
double es;
double chi;
double esphi;
/* Place parameters in static storage for common use
-------------------------------------------------*/
r_major = r_maj;
r_minor = r_min;
false_easting = false_east;
false_northing = false_north;
lon_center = -152.0 * D2R;
lat_center = 64.0 * D2R;
n = 6;
temp = r_minor / r_major;
es = .006768657997291094;
e = sqrt(es);
acoef[1]= 0.9945303;
acoef[2]= 0.0052083;
acoef[3]= 0.0072721;
acoef[4]= -0.0151089;
acoef[5]= 0.0642675;
acoef[6]= 0.3582802;
bcoef[1]= 0.0;
bcoef[2]= -.0027404;
bcoef[3]= 0.0048181;
bcoef[4]= -0.1932526;
bcoef[5]= -0.1381226;
bcoef[6]= -0.2884586;
esphi = e * sin(lat_center);
chi = 2.0 * atan(tan((HALF_PI + lat_center)/2.0) *
pow(((1.0 - esphi)/(1.0 + esphi)),(e/2.0))) - HALF_PI;
sincos(chi,&sin_p26,&cos_p26);
/* Report parameters to the user
-----------------------------*/
ptitle("ALASKA CONFORMAL");
radius2(r_major,r_minor);
cenlon(lon_center);
cenlat(lat_center);
offsetp(false_easting,false_northing);
return(OK);
}
/* ALASKA CONFORMAL inverse equations--mapping x,y to lat/long
----------------------------------------------------------*/
long alconinv(x, y, lon, lat)
double x; /* (O) X projection coordinate */
double y; /* (O) Y projection coordinate */
double *lon; /* (I) Longitude */
double *lat; /* (I) Latitude */
{
double dlon;
double sinlon,coslon;
double esphi;
double r;
double s;
double br;
double bi;
double ai;
double ar;
double ci;
double cr;
double di;
double dr;
double arn;
double ain;
double crn;
double cin;
double fxyr;
double fxyi;
double fpxyr;
double fpxyi;
double xp,yp;
double den;
double dxp;
double dyp;
double ds;
double z;
double cosz;
double sinz;
double rh;
double chi;
double dphi;
double phi;
long j;
long nn;
/* Inverse equations
-----------------*/
x = (x - false_easting) / r_major;
y = (y - false_northing) / r_major;
xp = x;
yp = y;
nn = 0;
/* Use Knuth algorithm for summing complex terms, to convert Modified-
Stereographic conformal to Oblique Stereographic coordinates.
--------------------------------------------------------------------*/
do
{
r = xp + xp;
s = xp * xp + yp * yp;
ar = acoef[n];
ai = bcoef[n];
br = acoef[n -1];
bi = bcoef[n - 1];
cr = (double) (n) * ar;
ci = (double) (n) * ai;
dr = (double) (n -1) * br;
di = (double) (n -1) * bi;
for (j = 2; j <= n; j++)
{
arn = br + r * ar;
ain = bi + r * ai;
if (j < n)
{
br = acoef[n -j] - s * ar;
bi = bcoef[n - j] - s * ai;
ar = arn;
ai = ain;
crn = dr + r * cr;
cin = di + r * ci;
dr = (double) (n - j) * acoef[n -j] - s * cr;
di = (double) (n - j) * bcoef[n -j] - s * ci;
cr = crn;
ci = cin;
}
}
br = -s * ar;
bi = -s * ai;
ar = arn;
ai = ain;
fxyr = xp * ar - yp * ai + br - x;
fxyi = yp * ar + xp * ai + bi - y;
fpxyr = xp * cr - yp * ci + dr;
fpxyi = yp * cr + xp * ci + ci;
den = fpxyr * fpxyr + fpxyi * fpxyi;
dxp = -(fxyr * fpxyr + fxyi * fpxyi) / den;
dyp = -(fxyi * fpxyr - fxyr * fpxyi) / den;
xp = xp + dxp;
yp = yp + dyp;
ds = fabs(dxp) + fabs(dyp);
nn++;
if (nn > 20)
{
p_error("Too many iterations in inverse","alcon-inv");
return(235);
}
}
while (ds > EPSLN);
/* convert Oblique Stereographic coordinates to LAT/LONG
------------------------------------------------------*/
rh = sqrt(xp * xp + yp * yp);
z = 2.0 * atan(rh / 2.0);
sincos(z,&sinz,&cosz);
*lon = lon_center;
if (fabs(rh) <= EPSLN)
{
*lat = lat_center;
return(OK);
}
chi = asinz(cosz * sin_p26 + (yp * sinz * cos_p26) / rh);
nn = 0;
phi = chi;
do
{
esphi = e * sin(phi);
dphi = 2.0 * atan(tan((HALF_PI + chi) / 2.0) *
pow(((1.0 + esphi) / (1.0 - esphi)),(e / 2.0))) - HALF_PI - phi;
phi += dphi;
nn++;
if (nn > 20)
{
p_error("Too many iterations in inverse","alcon-inv");
return(236);
}
}
while(fabs(dphi) > EPSLN);
*lat = phi;
*lon = adjust_lon (lon_center + atan2((xp * sinz), (rh * cos_p26 * cosz - yp *
sin_p26 * sinz)));
return(OK);
}
|